CS/ECE 374: Algorithms \& Models of Computation

Recursion

Lecture 10

We will learn

(1) How to ask the recursion fairy to solve the problem for us.

We will learn

(1) How to ask the recursion fairy to solve the problem for us.
(2) How to analyze the running time of a recursive algorithm.

We will learn

(1) How to ask the recursion fairy to solve the problem for us.
(2) How to analyze the running time of a recursive algorithm.
(3) Recursion in action
(1) Tower of Hanoi puzzle
(2) Merge sort
(3) Quick sort

Recursion

How to think about it

$$
\text { Recursion }=\text { Induction }
$$

Part I

Tower of Hanoi

Tower of Hanoi

The Tower of Hanoi puzzle

Move stack of \boldsymbol{n} disks from peg $\mathbf{0}$ to peg 2, one disk at a time. Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Tower of Hanoi via Recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    Hanoi(n-1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n-1, tmp, dest, src)
```


Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if (n>0) then
        Hanoi(n-1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n-1, tmp, dest, src)
```


Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if (n>0) then
        Hanoi(n-1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n-1, tmp, dest, src)
```

Proof of correctness.

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if (n>0) then
    Hanoi(n-1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n-1, tmp, dest, src)
```

Running time analysis. $\boldsymbol{T}(\boldsymbol{n})$: time to move \boldsymbol{n} disks via recursive strategy

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
    if (n>0) then
    Hanoi(n-1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n-1, tmp, dest, src)
```

Running time analysis.
$\boldsymbol{T}(\boldsymbol{n})$: time to move \boldsymbol{n} disks via recursive strategy

$$
T(n)=2 T(n-1)+1 \quad n>1 \quad \text { and } T(1)=1
$$

Analysis

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2^{2} T(n-2)+2+1 \\
& =\cdots \\
& =2^{i} T(n-i)+2^{i-1}+2^{i-2}+\ldots+1 \\
& =\cdots \\
& =2^{n-1} T(1)+2^{n-2}+\ldots+1 \\
& =2^{n-1}+2^{n-2}+\ldots+1 \\
& =\left(2^{n}-1\right) /(2-1)=2^{n}-1
\end{aligned}
$$

Part II

Merge Sort

Sorting

Input Given an array of \boldsymbol{n} elements
Goal Rearrange them in ascending order

Merge Sort [von Neumann]

MergeSort
(1) Input: Array $A[1 \ldots n]$

ALGORITHMS

Merge Sort [von Neumann]

MergeSort
(1) Input: Array $A[1 \ldots n]$

ALGORITHMS

(2) Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \quad I T H M S
$$

Merge Sort [von Neumann]

MergeSort
(1) Input: Array $A[1 \ldots n]$
ALGORITHMS
(2) Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$

$$
A L G O R \quad I T H M S
$$

(3) Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$

$$
A G L O R \quad H / M S T
$$

Merge Sort [von Neumann]

MergeSort
(1) Input: Array $A[1 \ldots n]$
ALGORITHMS
(2) Divide into subarrays $A[1 \ldots m]$ and $A[m+1 \ldots n]$, where $m=\lfloor n / 2\rfloor$
ALGOR ITHMS
(0) Recursively MergeSort $A[1 \ldots m]$ and $A[m+1 \ldots n]$
AGLOR HIMST

- Merge the sorted arrays
AGHILMORST

Merging Sorted Arrays

(1) Use a new array B to store the merged array
(2) Scan $A[1 \ldots m]$ and $A[m+1 \ldots n]$ from left-to-right, storing elements in B in order

$$
\underset{A}{A G L O R} \quad H I M S T
$$

Merging Sorted Arrays

(1) Use a new array B to store the merged array
(2) Scan $A[1 \ldots m]$ and $A[m+1 \ldots n]$ from left-to-right, storing elements in B in order

$$
\begin{aligned}
& \text { AGLOR HIMST} \\
& A G
\end{aligned}
$$

Merging Sorted Arrays

(1) Use a new array B to store the merged array
(2) Scan $A[1 \ldots m]$ and $A[m+1 \ldots n]$ from left-to-right, storing elements in B in order

$$
\begin{aligned}
& \text { AGLOR HIMST} \\
& A G H
\end{aligned}
$$

Merging Sorted Arrays

(1) Use a new array B to store the merged array
(2) Scan $A[1 \ldots m]$ and $A[m+1 \ldots n]$ from left-to-right, storing elements in B in order

$$
\begin{gathered}
\text { AGLOR HIMST} \\
A G H I
\end{gathered}
$$

Merging Sorted Arrays

(1) Use a new array B to store the merged array
(2) Scan $A[1 \ldots m]$ and $A[m+1 \ldots n]$ from left-to-right, storing elements in B in order

$$
\begin{gathered}
\text { AGLOR HIMST} \\
\text { AGHILMORST}
\end{gathered}
$$

Formal Code

```
MergeSort(A[1..n]):
    if \(n>1\)
        \(m \leftarrow\lfloor n / 2\rfloor\)
        MergeSort(A[1..m])
        MergeSort(A[m+1..n])
    \(\operatorname{Merge}(A[1 . . n], m)\)
```


Proving Correctness

Obvious way to prove correctness of recursive algorithm:

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on \boldsymbol{n} that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct?

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on \boldsymbol{n} that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural loop invariant that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on \boldsymbol{n} that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural loop invariant that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.
At the start of iteration k the following hold:
- $B[1 . . k]$ contains the smallest k elements of A correctly sorted.
- $B[1 . . k]$ contains the elements of $A[1 . .(i-1)]$ and $A[(m+1) . .(j-1)]$.
- No element of \boldsymbol{A} is modified.

Running Time

$\boldsymbol{T}(\boldsymbol{n})$: time for merge sort to sort an \boldsymbol{n} element array

Running Time

$T(n)$: time for merge sort to sort an n element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

Running Time

$T(n)$: time for merge sort to sort an n element array

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+c n
$$

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know $f(n)$ such that $T(n)=\Theta(f(n))$.
(1) $T(n)=O(f(n))$ - upper bound
(2) $T(n)=\Omega(f(n))$ - lower bound

Solving Recurrences: Some Techniques

(1) Know some basic math: geometric series, logarithms, exponentials, elementary calculus
(2) Expand the recurrence and spot a pattern and use simple math
(3) Recursion tree method - imagine the computation as a tree
(4) Guess and verify - useful for proving upper and lower bounds even if not tight bounds

Recursion Trees

Part III

Quick Sort

Quick Sort

Quick Sort [Hoare]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Quick Sort

Quick Sort [Hoare]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Quick Sort

Quick Sort [Hoare]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
(3) Recursively sort the subarrays, and concatenate them.

Quick Sort

Quick Sort [Hoare]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is $O(n)$
(3) Recursively sort the subarrays, and concatenate them.

Quick Sort: Example

(1) array: $16,12,14,20,5,3,18,19,1$
(2) pivot: 16

Time Analysis

(1) Let k be the rank of the chosen pivot. Then, $T(n)=T(k-1)+T(n-k)+O(n)$

Time Analysis

(1) Let k be the rank of the chosen pivot. Then, $T(n)=T(k-1)+T(n-k)+O(n)$
(2) If $k=\lceil n / 2\rceil$ then $T(n)=$
$T(\lceil n / 2\rceil-1)+T(\lfloor n / 2\rfloor)+O(n) \leq 2 T(n / 2)+O(n)$.
Then, $T(n)=O(n \log n)$.

Time Analysis

(1) Let k be the rank of the chosen pivot. Then, $T(n)=T(k-1)+T(n-k)+O(n)$
(2) If $k=\lceil n / 2\rceil$ then $T(n)=$ $T(\lceil n / 2\rceil-1)+T(\lfloor n / 2\rfloor)+O(n) \leq 2 T(n / 2)+O(n)$. Then, $T(n)=O(n \log n)$.
(1) Theoretically, median can be found in linear time.

Time Analysis

(1) Let k be the rank of the chosen pivot. Then, $T(n)=T(k-1)+T(n-k)+O(n)$
(2) If $k=\lceil n / 2\rceil$ then $T(n)=$ $T(\lceil n / 2\rceil-1)+T(\lfloor n / 2\rfloor)+O(n) \leq 2 T(n / 2)+O(n)$. Then, $T(n)=O(n \log n)$.
(1) Theoretically, median can be found in linear time.
(3) Typically, pivot is the first or last element of array. Then,

$$
T(n)=\max _{1 \leq k \leq n}(T(k-1)+T(n-k)+O(n))
$$

In the worst case $T(n)=T(n-1)+O(n)$, which means $T(n)=O\left(n^{2}\right)$. Happens if array is already sorted and pivot is always first element.

Recursion Trees

