So far we’ve only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-deterministic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

- What does a non-deterministic Turing machine look like?
- What languages are accept by non-deterministic Turing machines?
So far we’ve only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-deterministic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

• What does a non-deterministic Turing machine look like?
• What languages are accepted by non-deterministic Turing machines?
Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-deterministic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

• What does a non-deterministic Turing machine look like?

• What languages are accepted by non-deterministic Turing machines?
Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-deterministic Turing computation follow a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

- What does a non-deterministic Turing machine look like?
- What languages are accept by non-deterministic Turing machines?
Exam Content

Including but not limited to:

• Languages and strings
• Regular expressions
• Deterministic finite automata
• Non-deterministic finite automata
• Equivalence of DFAs/NFAs/RegEx
• Regular language closure properties
• Fooling Sets
Strings
String Definitions

Definition

1. A string/word over Σ is a finite sequence of symbols over Σ. For example, ‘0101001’, ‘string’, ‘⟨moveback⟩⟨rotate90⟩’

2. ϵ is the empty string.

3. The length of a string w (denoted by $|w|$) is the number of symbols in w. For example, $|101| = 3$, $|\epsilon| = 0$

4. For integer $n \geq 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ.

5. concatenation defined recursively:
 - $xy = y$ if $x = \epsilon$
 - $xy = a(wy)$ if $x = aw$
Induction on strings
Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The *reverse* w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^Ra$ if $w = ax$ for some $a \in \Sigma$ and string x
Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition
The reverse w^R of a string w is defined as follows:

- $w^R = \epsilon$ if $w = \epsilon$
- $w^R = x^Ra$ if $w = ax$ for some $a \in \Sigma$ and string x

Theorem
Prove that for any strings $u, v \in \Sigma^$, $(uv)^R = v^R u^R$.*

Example: $(dog \cdot cat)^R = (cat)^R \cdot (dog)^R = tacgod$.
Principle of mathematical induction

Induction is a way to prove statements of the form \(\forall n \geq 0, P(n) \) where \(P(n) \) is a statement that holds for integer \(n \).

Example: Prove that \(\sum_{i=0}^{n} i = \frac{n(n + 1)}{2} \) for all \(n \).

Induction template:

- **Base case:** Prove \(P(0) \)
- **Induction hypothesis:** Let \(k > 0 \) be an **arbitrary** integer. Assume that \(P(n) \) holds for any \(n \leq k \).
- **Induction Step:** Prove that \(P(n) \) holds, for \(n = k + 1 \).
Theorem
Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|u|$ means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$
Theorem

Prove that for any strings \(u, v \in \Sigma^* \), \((uv)^R = v^R u^R\).

Proof by induction on \(|u|\) means that we are proving the following.

Base case: Let \(u \) be an arbitrary string of length 0. \(u = \epsilon \) since there is only one such string. Then

\[
(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R
\]

Induction hypothesis: \(\forall n \geq 0 \), for any string \(u \) of length \(n \):

For all strings \(v \in \Sigma^* \), \((uv)^R = v^R u^R\).
Theorem
Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|u|$ means that we are proving the following.

Base case: Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about v, hence statement holds for all $v \in \Sigma^*$.
Inductive step

- Let u be an arbitrary string of length $n > 0$. Assume inductive hypothesis holds for all strings w of length $< n$.
- Since $|u| = n > 0$ we have $u = ay$ for some string y with $|y| < n$ and $a \in \Sigma$.
- Then
Inductive step

• Let u be an arbitrary string of length $n > 0$. Assume inductive hypothesis holds for all strings w of length $< n$.
• Since $|u| = n > 0$ we have $u = ay$ for some string y with $|y| < n$ and $a \in \Sigma$.
• Then

$$ (uv)^R = $$
Inductive step

- Let u be an arbitrary string of length $n > 0$. Assume inductive hypothesis holds for all strings w of length $< n$.
- Since $|u| = n > 0$ we have $u = ay$ for some string y with $|y| < n$ and $a \in \Sigma$.
- Then

$$
(uv)^R = ((ay)v)^R \\
= (a(yv))^R \\
= (yv)^Ra^R \\
= (y^Rv^R)a^R \\
= v^R(y^Ra^R) \\
= v^R(ay)^R \\
= v^Ru^R
$$
Theorem
Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|v|$ means that we are proving the following.
Theorem
Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|v|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n:
For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.
Theorem

Proof that for any strings \(u, v \in \Sigma^*\), \((uv)^R = v^R u^R\).

Proof by induction on |\(v| means that we are proving the following.

Induction hypothesis: \(\forall n \geq 0\), for any string \(v\) of length \(n\):

For all strings \(u \in \Sigma^*\), \((uv)^R = v^R u^R\).

Base case: Let \(v\) be an arbitrary string of length 0. \(v = \epsilon\) since there is only one such string. Then

\[
(\epsilon^R u^R) = (u \epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R
\]
Inductive step

• Let \(v \) be an arbitrary string of length \(n > 0 \). Assume inductive hypothesis holds for all strings \(w \) of length \(<|n| \).
• Since \(|v| = n > 0 \) we have \(v = ay \) for some string \(y \) with \(|y| < n \) and \(a \in \Sigma \).
• Then

\[
(uv)^R = (u(ay))^R \\
= ((ua)y)^R \\
= y^R(ua)^R \\
= ??
\]
Inductive step

- Let v be an arbitrary string of length $n > 0$. Assume inductive hypothesis holds for all strings w of length $|w| < n$.
- Since $|v| = n > 0$ we have $v = ay$ for some string y with $|y| < n$ and $a \in \Sigma$.
- Then
 \[
 (uv)^R = (u(ay))^R \\
 = ((ua)y)^R \\
 = y^R(ua)^R \\
 = ??
 \]

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include $n = 0$ \textbf{and} $n = 1$. However, $n = 1$ itself requires induction on $|u|$!
Regular expressions
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \cdot r_2) = r_1 \cdot r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
Regular Languages vs Regular Expressions

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset regular</td>
<td>\emptyset denotes \emptyset</td>
</tr>
<tr>
<td>${\epsilon}$ regular</td>
<td>ϵ denotes ${\epsilon}$</td>
</tr>
<tr>
<td>${a}$ regular for $a \in \Sigma$</td>
<td>a denote ${a}$</td>
</tr>
<tr>
<td>$R_1 \cup R_2$ regular if both are</td>
<td>$r_1 + r_2$ denotes $R_1 \cup R_2$</td>
</tr>
<tr>
<td>$R_1 R_2$ regular if both are</td>
<td>$r_1 \cdot r_2$ denotes $R_1 R_2$</td>
</tr>
<tr>
<td>R^* is regular if R is</td>
<td>$r^$ denote $R^$</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
The language \(\{ 0^i1^j0^k1^\ell \mid i, j, k, \ell \geq 0 \} \) is not regular.
Practice Problem

What is the regular expression for:

• All strings except 11.
Practice Problem

What is the regular expression for:

- All strings except 11.
- All strings that do not contain 000 as a subsequence.
Deterministic finite automata
Definition
A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.
DFA Notation

\[M = (Q, \Sigma, \delta, s, A) \]
Example

- $Q =$
- $\Sigma =$
- $\delta =$
- $s =$
- $A =$
Draw the DFA representing the regular language:

\[L = \{0^i1^j0^k1^\ell \mid i, j, k, \ell \geq 0\} \]
Non-deterministic Finite automata
Definition
The language $L(M)$ accepted by a DFA $M = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \in A\}.$$
Another Way to look at NFAs

Is 010101 accepted?
Another Way to look at NFAs

Is 010100 accepted?

0

1

0

1

0

0
Practice Problem [True/False]

Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cup L(M') = \Sigma^*$.
Let \(M = (\Sigma, Q, s, A, \delta) \) and \(M' = (\Sigma, Q, s, Q \setminus A, \delta) \) be arbitrary DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \(L(M) \cup L(M') = \Sigma' \).
Closure of Regular languages
Regular languages are closed under:

-
-
-
-
-
Given two NFAs s and t:

$L = L_s \cap L_t$

$L = L_s \cup L_t$

$L = (L_s)^*$
Example - Closure

Are regular languages closed under intersection $L_1 \cap L_2$?
If L_1, L_2, \ldots are all regular languages, then $L = \bigcup_{i=0}^{\infty} L_i$ is regular.
Fooling Sets
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example:
$F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \geq 0\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k1^k \mid k \geq 0\}$.
Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a **fooling set** or **distinguishing set** for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k1^k \mid k \geq 0\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
For all languages L, if L is regular, then L does not have an infinite fooling set.
Practice Problem [True/False]

The language \(\{0^i1^j0^k1^\ell \mid i \geq j \geq k \geq \ell \geq 0 \} \) is not regular.
The strings 010 and 101 are distinguishable by the language
$L = \{ x \in \Sigma^* \mid |x| \text{ is even} \}$.