Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-determistic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

- What does a non-deterministic Turing machine look like?
- What languages are accept by non-deterministic Turing machines?

CS/ECE-374: Lecture 10 - Midterm 1 Review

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 25, 2021
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-determistic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-determistic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

- What does a non-deterministic Turing machine look like?

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines. However, similar to the relationship between DFAs and NFAs, there exists non-determistic Turing computation follows a non-deterministic path. So based on your knowledge of DFAs/NFAs and Turing machines I have two questions:

- What does a non-deterministic Turing machine look like?
- What languages are accept by non-deterministic Turing machines?

Exam Content

Including but not limited to:

- Languages and strings
- Regular expressions
- Deterministic finite automata
- Non-deterministic finite automata
- Equivalence of DFAs/NFAs/RegEx
- Regular language closure properties
- Fooling Sets

Strings

String Definitions

Definition

1. A string/word over Σ is a finite sequence of symbols over Σ. For example, '0101001', ‘string', '〈moveback $\rangle\langle$ rotate 90\rangle '
2. ϵ is the empty string.
3. The length of a string w (denoted by $|w|$) is the number of symbols in w. For example, $|101|=3,|\epsilon|=0$
4. For integer $n \geq 0, \Sigma^{n}$ is set of all strings over Σ of length n. Σ^{*} is the set of all strings over Σ.
5. concatenation defined recursively:

- $x y=y$ if $x=\epsilon$
- $x y=a(w y)$ if $x=a w$

Induction on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^{R} of a string w is defined as follows:

- $w^{R}=\epsilon$ if $w=\epsilon$
- $w^{R}=x^{R} a$ if $w=a x$ for some $a \in \Sigma$ and string x

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^{R} of a string w is defined as follows:

- $w^{R}=\epsilon$ if $w=\epsilon$
- $w^{R}=x^{R} a$ if $w=a x$ for some $a \in \Sigma$ and string x

Theorem
Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Example: $(\mathrm{dog} \cdot \mathrm{cat})^{R}=(\mathrm{cat})^{R} \cdot(\mathrm{dog})^{R}=$ tacgod.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \geq 0, P(n)$ where $P(n)$ is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i=n(n+1) / 2$ for all n.

Induction template:

- Base case: Prove P(0)
- Induction hypothesis: Let $k>0$ be an arbitrary integer. Assume that $P(n)$ holds for any $n \leq k$.
- Induction Step: Prove that $P(n)$ holds, for $n=k+1$.

By induction on $|u|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|u|$ means that we are proving the following.

Base case: Let u be an arbitrary string of length $0 . u=\epsilon$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$

By induction on $|\mathrm{u}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|u|$ means that we are proving the following.

Base case: Let u be an arbitrary string of length $0 . u=\epsilon$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$
Induction hypothesis: $\forall n \geq 0$, for any string u of length n :
For all strings $v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

By induction on $|\mathrm{u}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|u|$ means that we are proving the following.

Base case: Let u be an arbitrary string of length $0 . u=\epsilon$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$
Induction hypothesis: $\forall n \geq 0$, for any string u of length n : For all strings $v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

No assumption about v, hence statement holds for all $v \in \Sigma^{*}$.

Inductive step

- Let u be an arbitrary string of length $n>0$. Assume inductive hypothesis holds for all strings w of length $<n$.
- Since $|u|=n>0$ we have $u=$ ay for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

Inductive step

- Let u be an arbitrary string of length $n>0$. Assume inductive hypothesis holds for all strings w of length $<n$.
- Since $|u|=n>0$ we have $u=$ ay for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

$$
(u v)^{R}=
$$

Inductive step

- Let u be an arbitrary string of length $n>0$. Assume inductive hypothesis holds for all strings w of length $<n$.
- Since $|u|=n>0$ we have $u=a y$ for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =((a y) v)^{R} \\
& =(a(y v))^{R} \\
& =(y v)^{R} a^{R} \\
& =\left(v^{R} y^{R}\right) a^{R} \\
& =v^{R}\left(y^{R} a^{R}\right) \\
& =v^{R}(a y)^{R} \\
& =v^{R} u^{R}
\end{aligned}
$$

Induction on $|v|$

Theorem
 Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Proof by induction on $|v|$ means that we are proving the following.

Induction on $|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|v|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n :
For all strings $u \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Induction on $|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|v|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n :
For all strings $u \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Base case: Let v be an arbitrary string of length $0 . v=\epsilon$ since there is only one such string. Then

$$
(u v)^{R}=(u \epsilon)^{R}=u^{R}=\epsilon u^{R}=\epsilon^{R} u^{R}=v^{R} u^{R}
$$

Inductive step

- Let v be an arbitrary string of length $n>0$. Assume inductive hypothesis holds for all strings w of length $<n$.
- Since $|v|=n>0$ we have $v=a y$ for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =(u(a y))^{R} \\
& =((u a) y)^{R} \\
& =y^{R}(u a)^{R} \\
& =? ?
\end{aligned}
$$

Inductive step

- Let v be an arbitrary string of length $n>0$. Assume inductive hypothesis holds for all strings w of length $<n$.
- Since $|v|=n>0$ we have $v=a y$ for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =(u(a y))^{R} \\
& =((u a) y)^{R} \\
& =y^{R}(u a)^{R} \\
& =? ?
\end{aligned}
$$

Cannot simplify (ua) ${ }^{R}$ using inductive hypothesis. Can simplify if we extend base case to include $n=0$ and $n=1$. However, $n=1$ itself requires induction on $|u|$!

Regular expressions

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:
Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:
Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages R_{1} and R_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \cdot r_{2}\right)=r_{1} \cdot r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $R_{1} R_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages
\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$r_{1}+r_{2}$ denotes $R_{1} \cup R_{2}$
$r_{1} \cdot r_{2}$ denotes $R_{1} R_{2}$
r^{*} denote R^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Practice Problem [True/False]

The language $\left\{0^{i} 1^{j} 0^{k_{1} \ell} \mid i, j, k, \ell \geq 0\right\}$ is not regular.

Practice Problem

What is the regular expression for:

- All strings except 11.

Practice Problem

What is the regular expression for:

- All strings except 11.
- All strings that do not contain 000 as a subsequence.

Deterministic finite automata

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, S, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_{0} for start state, F for final states.

DFA Notation

$$
M=(\overbrace{Q}, \underbrace{\Sigma}, \overbrace{\delta}, \underbrace{s}, \overbrace{A})
$$

Example

- $Q=$
- $\Sigma=$
- $\delta=$
- $\mathrm{S}=$
- $A=$

Practice Problem

Draw the DFA representing the regular language:
$L=\left\{0^{i} 1^{j} 0^{k} \gamma^{\ell} \mid i, j, k, \ell \geq 0\right\}$

Non-deterministic Finite automata

Formal definition of language accepted by M

Definition
The language $L(M)$ accepted by a DFA $M=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \in A\right\}
$$

Another Way to look at NFAs

Is 010101 accepted?

Another Way to look at NFAs

Practice Problem [True/False]

Let $M=(\Sigma, Q, s, A, \delta)$ and $M^{\prime}=(\Sigma, Q, s, Q \backslash A, \delta)$ be arbitrary
DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states.
Then $L(M) \cup L\left(M^{\prime}\right)=\Sigma^{*}$.

Practice Problem [True/False]

Let $M=(\Sigma, Q, s, A, \delta)$ and $M^{\prime}=(\Sigma, Q, s, Q \backslash A, \delta)$ be arbitrary
DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states.
Then $L(M) \cup L\left(M^{\prime}\right)=\Sigma^{\prime}$.

Closure of Regular languages

Regular languages are closed under:

Thompson's algorithm

Given two NFAs s and t :

Example - Closure

Are regular languages closed under intersection $L_{1} \cap L_{2}$?

Practice Problem [True/False]

If L_{1}, L_{2}, \ldots are all regular languages, then $L=\bigcup_{i=0}^{\infty} L_{i}$ is regular.

Fooling Sets

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than $|F|$ states.

Practice Problem [True/False]

For all languages L, if L is regular, then L does not have an infinite fooling set.

Practice Problem [True/False]

The language $\left\{0^{i} 1^{j} 0^{k} 1^{\ell} \mid i \geq j \geq k \geq \ell \geq 0\right\}$ is not regular.

Practice Problem [True/False]

The strings 010 and 101 are distinguishable by the language $L=\left\{x \in \Sigma^{*}| | x \mid\right.$ is even $\}$.

