Pre-lecture brain teaser

Is the following language regular? Either way, prove it.
$L=\{$ strings of properly matched open and closing parentheses $\}$

CS/ECE-374: Lecture 8 - Context-Free languages and Turing Machines

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 16, 2021
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Is the following language regular? Either way, prove it.
$L=\{$ strings of properly matched open and closing parentheses $\}$

Larger world of languages!

Chomsky Hierarchy

Non-recursively-enumerable

Remember our hierarchy of languages

Chomsky Hierarchy

Non-recursively-enumerable

You've mastered regular expressions.

Chomsky Hierarchy

Non-recursively-enumerable

Context-Free Languages

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)
$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b b a$

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)
$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b b a$

What strings can S generate like this?

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
- $S \in V$ is a start symbol
$G=($ Variables, Terminals, Productions, Start var $)$

Example formally...

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$$
G=\left(\begin{array}{c}
\{S\}, \quad\{a, b\}, \quad\left\{\begin{array}{c}
S \rightarrow \epsilon, \\
S \rightarrow a, \\
S \rightarrow b \\
S \rightarrow a S a \\
S \rightarrow b S b
\end{array}\right\} \quad S \\
\end{array}\right.
$$

Examples

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Examples

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& S \rightarrow \epsilon \mid 0 S 1
\end{aligned}
$$

Context Free Languages

Definition

The language generated by $C F G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S \sim^{*} w\right\}$.

Context Free Languages

Definition

The language generated by $\operatorname{CFG} G=(V, T, P, S)$ is denoted by
$L(G)$ where $L(G)=\left\{w \in T^{*} \mid S \sim^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$.

Example

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& S \rightarrow \epsilon \mid 0 S 1 \\
& L=\left\{0^{n} 1^{m} \mid m>n\right\} \\
& L=\left\{w \in\{(,)\}^{*} \mid w \text { is properly nested string of parenthesis }\right\} .
\end{aligned}
$$

Context-Sensitive Langauges

Chomsky Hierarchy

Non-recursively-enumerable

Now that we mastered acknowledged Context-Free Languages.....

Chomsky Hierarchy

Non-recursively-enumerable

On to the next one.....

Example

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context free language.

Example

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context free language. but it is a context-sensitive language!

- $V=\{S, A, B\}$
- $T=\{a, b, c\}$
$P=\left\{\begin{array}{c}S \rightarrow a b c \mid a A b c, \\ A b \rightarrow b A, \\ A c \rightarrow B b c c \\ b B \rightarrow B b \\ a B \rightarrow a a \mid a a A\end{array}\right\}$

Example

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context free language. but it is a context-sensitive language!

- $V=\{S, A, B\}$
- $T=\{a, b, c\}$
$P=\left\{\begin{array}{c}S \rightarrow a b c \mid a A b c, \\ A b \rightarrow b A, \\ A c \rightarrow B b c c \\ b B \rightarrow B b \\ a B \rightarrow a a \mid a a A\end{array}\right\}$
$S \rightsquigarrow a A b c \rightsquigarrow a b A c \rightsquigarrow a b B b c c \rightsquigarrow a B b b c c \rightsquigarrow a a A b b c c \rightsquigarrow a a b A b c c$ $\rightsquigarrow a \operatorname{abbAcc} \rightsquigarrow a a b b B b c c c \rightsquigarrow a a b B b b c c c \rightsquigarrow a a B b b b c c c$ \rightsquigarrow aaabbbccc

Context Free Grammar (CFG) Definition

Definition

A CSG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \rightarrow \alpha$
where A and α are strings in $(V \cup T)^{*}$.
- $S \in V$ is a start symbol
$G=($ Variables, Terminals, Productions, Start var $)$

Example formally...

$$
\begin{aligned}
L & =\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} \\
& \cdot V=\{S, A, B\} \\
& \cdot T=\{a, b, c\} \\
& \cdot P=\left\{\begin{array}{c}
S \rightarrow a b c \mid a A b c \\
A b \rightarrow b A \\
A c \rightarrow B b c c \\
b B \rightarrow B b \\
a B \rightarrow a a \mid a a A
\end{array}\right\}
\end{aligned}
$$

$$
G=\left(\begin{array}{ll}
\{S, A, B\}, \quad\{a, b, c\}, \quad\left\{\begin{array}{c}
S \rightarrow a b c \mid a A b c, \\
A b \rightarrow b A, \\
A c \rightarrow B b c c \\
b B \rightarrow B b \\
a B \rightarrow a a \mid a a A
\end{array}\right\} S
\end{array}\right)
$$

Turing Machines

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\left\{L \mid L \subseteq\{0,1\}^{*}\right\}$ is countaninite / uncountably infinite

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\left\{L \mid L \subseteq\{0,1\}^{*}\right\}$ is countaninite / uncountably infinite
- Set of all programs:
$\{P \mid P$ is a finite length computer program $\}$: is countably infinite / uncountabinfinite.

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\left\{L \mid L \subseteq\{0,1\}^{*}\right\}$ is countaninite / uncountably infinite
- Set of all programs:
$\{P \mid P$ is a finite length computer program $\}$: is countably infinite / uncountinfinite.
- Conclusion: There are languages for which there are no programs.

Chomsky Hierarchy

Non-recursively-enumerable

Chomsky Hierarchy

Non-recursively-enumerable

Onto our final class of languages - recursively enumerable (aka Turing-recognizable) languages.

What is a Turing machine

Turing machine

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).

High level goals

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example.
- Every TM can be represented as a string.
- Existence of Universal Turing Machine which is the model/inspiration for stored program computing. UTM can simulate any TM
- Implications for what can be computed and what cannot be computed

Turing machine: Formal definition

A Turing machine is a 7-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$

- Q: finite set of states.
- Σ : finite input alphabet.
- Γ : finite tape alphabet.
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}$: Transition function.
- $q_{0} \in Q$ is the initial state.
- $q_{\text {acc }} \in Q$ is the accepting/final state.
- $q_{\mathrm{rej}} \in Q$ is the rejecting state.
- \sqcup or : Special blank symbol on the tape.

Turing machine: Transition function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, S\}
$$

As such, the transition

$$
\delta(q, c)=(p, d, L)
$$

- q : current state.
- c: character under tape head.
- p: new state.
- d: character to write under tape head
- L: Move tape head left.

Turing machine: Transition function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, S\}
$$

As such, the transition

$$
\delta(q, c)=(p, d, L)
$$

- q: current state.
- c: character under tape head.
- p: new state.
- d: character to write under tape head

Missing transitions
lead to hell state.
"Blue screen of death."
"Machine crashes."

- L: Move tape head left.

Some examples of Turing machines

Example: Turing machine for $a^{n} b^{n} c^{n}$

Can view this Turing machine in action on turingmachine.io!

Languages defined by a Turing machine

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka $R E$) languages

$$
L=\{L(M) \mid M \text { some Turing machine }\} .
$$

- Recursive / decidable languages
$L=\{L(M) \mid M$ some Turing machine that halts on all inputs $\}$.

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka $R E$) languages (bad)

$$
L=\{L(M) \mid M \text { some Turing machine }\} .
$$

- Recursive I decidable languages (gOOd)
$L=\{L(M) \mid M$ some Turing machine that halts on all inputs $\}$.

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka $R E$) languages (bad)

$$
L=\{L(M) \mid M \text { some Turing machine }\} .
$$

- Recursive / decidable languages (gOOd)
$L=\{L(M) \mid M$ some Turing machine that halts on all inputs $\}$.
- Fundamental questions:
- What languages are RE?
-Which are recursive?
-What is the difference?
-What makes a language decidable?

