Pre-lecture brain teaser

$L^{\prime}=\{b i t s t r i n g s$ with equal number of 0 s and 1 s$\}$
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show L is regular via closure.

CS/ECE-374: Lecture 7 - Non-regularity and fooling sets

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 16, 2021
University of Illinois at Urbana-Champaign

Non-regularity via closure properties

$L^{\prime}=\{b i t s t r i n g s$ with equal number of 0 s and 1 s$\}$
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show L is regular via closure.

Non-regularity via closure properties

$L^{\prime}=\{b i t s t r i n g s$ with equal number of $0 s$ and $1 s\}$
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show L is regular via closure.

Can we show that L is non-regular from scratch?

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.

Pre-lecture brain teaser

We have a language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Prove that L is non-regular.

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.
This contradicts the fact that M accepts L. Thus, there is no DFA

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{i} prefix has a unique state.
Are there states that aren't unique?
Can states be combined?

Equivalence between states

Definition

$M=(Q, \Sigma, \delta, s, A):$ DFA.
Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^{*}$, we have that

$$
\delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A
$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition

$M=(Q, \Sigma, \delta, s, A): D F A$.
Two states $p, q \in Q$ are
distinguishable if there exists a string $w \in \Sigma^{*}$, such that
$\delta^{*}(p, w) \in A \quad$ and $\quad \delta^{*}(q, w) \notin A$.

or
$\delta^{*}(p, w) \notin A \quad$ and $\quad \delta^{*}(q, w) \in A$.

Distinguishable prefixes

$$
M=(Q, \Sigma, \delta, s, A): D F A
$$

Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Distinguishable prefixes

$M=(Q, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.
Definition
Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M($ or $L(M))$ if ∇u and ∇w are distinguishable.

Distinguishable prefixes

$M=(Q, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.
Definition
Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement) Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L$).

Distinguishable means different states

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x) \in Q$ and $\nabla y=\delta^{*}(s, y) \in Q$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Proof.
Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!
Assumption that $\nabla x=\nabla y$ is false.

Review questions...

- Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Review questions...

- Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Review questions...

- Prove for any $i \neq j$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.
- Prove that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.

Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Reminder: $\nabla x=\delta^{*}(s, x)$.

Proof of theorem

Theorem (Reworded.)
L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Proof of theorem

Theorem (Reworded.)
L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.

Proof of theorem

Theorem (Reworded.)
L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.
By lemma $q_{i} \neq q_{j}$ for all $i \neq j$.
As such, $|Q| \geq\left|\left\{q_{1}, \ldots, q_{m}\right\}\right|=\left|\left\{w_{1}, \ldots, w_{m}\right\}\right|=|A|$.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.
Proof.
Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.
Contradiction: DFA = deterministic finite automata. But M not finite.

Examples

- $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s \} Can use the same fooling set as before: Same logic. $0^{i} 1^{i} \in L$ and $0^{j} 1^{i} \notin L$ so $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable and so L is not regular.
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Similar logic. $0^{i} 1^{i} \notin L$ and $0^{j} 1^{i} \in L$ so $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable and so L is not regular.

Examples

$L=$ strings of properly matched open and closing parentheses $\}$

Examples

$L=\{$ palindromes over the binary alphabet $\Sigma=\{0,1\}\}$
A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

$L_{4}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a 1 located 4 positions from the end $\}$

Exponential gap between NFA and DFA size

$$
L_{k}=\left\{w \in\{0,1\}^{*} \mid w \text { has a } 1 k \text { positions from the end }\right\}
$$

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.
Theorem
Every DFA that accepts L_{k} has at least 2^{k} states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.
Theorem
Every DFA that accepts L_{k} has at least 2^{k} states.
Claim
$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

How do pick a fooling set

How do we pick a fooling set F?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L. For example if $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ do not pick 1 and 10 (say). Why?

Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Indistinguishably

Recall:
Definition
For a language L over Σ and two strings $x, y \in \Sigma^{*}$ we say that x and y are distinguishable with respect to L if there is a string
$w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are
indistinguishable with respect to L if there is no such w.
Given language Lover Σ define a relation \equiv_{L} over strings in Σ^{*} as follows: $x \equiv_{L} y$ iff x and y are indistinguishable with respect to L.

Indistinguishably

Recall:

Definition
For a language L over Σ and two strings $x, y \in \Sigma^{*}$ we say that x and y are distinguishable with respect to L if there is a string
$w \in \Sigma^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are
indistinguishable with respect to L if there is no such w.
Given language Lover Σ define a relation \equiv L over strings in Σ^{*} as follows: $x \equiv_{L} y$ iff x and y are indistinguishable with respect to L.

Definition
$x \equiv L y$ means that $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$.
In words: x is equivalent to y under L.

Example: Equivalence classes

Indistinguishability

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.
Proof.

- Reflexive: $\forall x \in \Sigma^{*}: \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow x w \in L$. $\Longrightarrow X \equiv{ }_{L}$.
- Symmetry: $x \equiv L y$ then $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow x w \in L \Longrightarrow y \equiv L x$.
- Transitivity: $x \equiv \angle y$ and $y \equiv \angle z$ $\forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$ and $\forall w \in \Sigma^{*}: y w \in L \Longleftrightarrow$ $z w \in L$
$\Longrightarrow \forall W \in \Sigma^{*}: x w \in L \Longleftrightarrow z W \in L$ $\Longrightarrow X \equiv_{L} Z$.

Equivalences over automatas...

Claim

\equiv_{L} is an equivalence relation over Σ^{*}.
Therefore, $\equiv\left\llcorner\right.$ partitions Σ^{*} into a collection of equivalence classes.

Definition
L: A language For a string $x \in \Sigma^{*}$, let

$$
[x]=[x]_{L}=\left\{y \in \Sigma^{*} \mid x \equiv L y\right\}
$$

be the equivalence class of x according to L.
Definition
$[L]=\left\{[x]_{L} \mid x \in \Sigma^{*}\right\}$ is the set of equivalence classes of L.

Claim

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_{L} then x, y are indistinguishable. Otherwise they are distinguishable.

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings.
$x \equiv L y \Longleftrightarrow x, y$ are indistinguishable for L.
Proof.
$x \equiv L y \Longrightarrow \forall w \in \Sigma^{*}: x w \in L \Longleftrightarrow y w \in L$
x and y are indistinguishable for L.
$x \not \equiv L y \Longrightarrow \exists w \in \Sigma^{*}: x w \in L$ and $y w \notin L$
$\Longrightarrow x$ and y are distinguishable for L.

All strings arriving at a state are in the same class

Lemma

$M=(Q, \Sigma, \delta, s, A)$ a $D F A$ for a language L.
For any $q \in A$, let $L_{q}=\left\{w \in \Sigma^{*} \mid \nabla w=\delta^{*}(s, w)=q\right\}$.
Then, there exists a string x, such that $L_{q} \subseteq[x]_{L}$.

An inefficient automata

General idea behind algorithm:

Base case: Given two states, if p and q, if one accepts and the other rejects, then they are not equivalent.

Recursion: Assuming $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$, if $p^{\prime} \not \equiv q^{\prime}$ then $p \not \equiv q$

An inefficient automata

	90	q_{1}	q_{2}	93	94	9_{5}
q_{1}						
q_{2}						
q_{3}						
94						
q_{5}						

