$L' = \{$ bitstrings with equal number of 0s and 1s $\}$

 $L = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$

Suppose we have already shown that *L'* is non-regular. Can we show *L* is regular via *closure*.

CS/ECE-374: Lecture 7 - Non-regularity and fooling sets

Lecturer: Nickvash Kani Chat moderator: Samir Khan February 16, 2021

University of Illinois at Urbana-Champaign

 $L' = \{$ bitstrings with equal number of 0s and 1s $\}$

 $L = \{0^n 1^n \mid n \ge 0\}$

Suppose we have already shown that *L*' is non-regular. Can we show *L* is regular via *closure*.

 $L' = \{$ bitstrings with equal number of 0s and 1s $\}$

 $L = \{0^n 1^n \mid n \ge 0\}$

Suppose we have already shown that *L*' is non-regular. Can we show *L* is regular via *closure*.

Can we show that *L* is non-regular from scratch?

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.

We have a language $L = \{0^{n}1^{n} | n \ge 0\}$ Prove that *L* is non-regular. Not all languages are regular

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is *countably infinite*
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$. This contradicts the fact that *M* accepts *L*. Thus, there is no DFA

8

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{*i*} prefix has a unique state. Are there states that aren't unique? Can states be combined? **Definition** $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

 $\delta^*(p,w) \notin A$ and $\delta^*(q,w) \in A$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^*$ are distinguishable for a language *L* if there exists a string *x*, such that $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and $wx \in L$).

Lemma L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof. Assume for the sake of contradiction that $\nabla x = \nabla y$.

Lemma L: regular language.

L. regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

 \implies $A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w)$

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!
Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$
$$= \delta^*(s, yw) = \nabla yw \notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Assumption that $\nabla x = \nabla y$ is false.

Review questions...

• Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \ge 0\}$.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \ge 0\}$.
- Let L be a regular language, and let w₁,..., w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n 1^n \mid n \ge 0\}$.
- Let L be a regular language, and let w₁,..., w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.
- Prove that $\{0^n 1^n \mid n \ge 0\}$ is not regular.

Fooling sets: Proving non-regularity

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings *x*, *y* \in *F* are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Already proved the following lemma:

Lemma L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts *L*. Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts *L*. Let $q_i = \nabla w_i = \delta^*(s, x_i)$. By lemma $q_i \neq q_j$ for all $i \neq j$. As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |A|$. **Corollary** If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Corollary If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Let $F_i = \{w_1, ..., w_i\}.$

By theorem, # states of $M \ge |F_i| = i$, for all *i*.

As such, number of states in M is infinite.

Corollary If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Let $F_i = \{w_1, ..., w_i\}.$

By theorem, # states of $M \ge |F_i| = i$, for all *i*.

As such, number of states in M is infinite.

Contradiction: **DFA** = deterministic finite automata. But *M* not finite.

Examples

- $\{0^n 1^n \mid n \ge 0\}$
- {bitstrings with equal number of 0s and 1s} Can use the same fooling set as before: Same logic. $0^{i}1^{i} \in L$ and $0^{j}1^{i} \notin L$ so $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable and so *L* is not regular.
- $\{0^{k}1^{\ell} | k \neq \ell\}$ Similar logic. $0^{i}1^{i} \notin L$ and $0^{j}1^{i} \in L$ so $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable and so *L* is not regular.

 $L = \{\text{strings of properly matched open and closing parentheses}\}$

Examples

 $L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \}$ A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

 $L_4 = \{w \in \{0,1\}^* \mid w \text{ has a 1 located 4 positions from the end}\}$

Exponential gap between NFA and DFA size

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 k \text{ positions from the end}\}$

 $L_k = \{w \in \{0, 1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states. $L_k = \{w \in \{0, 1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem Every **DFA** that accepts L_k has at least 2^k states. $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem Every DFA that accepts L_k has at least 2^k states.

Claim

 $F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

Why?

How do we pick a fooling set F?

- If x, y are in F and x ≠ y they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
 For example if L = {0^k1^k | k ≥ 0} do not pick 1 and 10 (say).
 Why?

Myhill-Nerode Theorem

"Myhill-Nerode Theorem": A regular language *L* has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for *L*. Recall:

Definition

For a language *L* over Σ and two strings $x, y \in \Sigma^*$ we say that *x* and *y* are distinguishable with respect to *L* if there is a string $w \in \Sigma^*$ such that exactly one of *xw*, *yw* is in *L*. *x*, *y* are indistinguishable with respect to *L* if there is no such *w*.

Given language *L* over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff *x* and *y* are indistinguishable with respect to *L*.

Recall:

Definition

For a language *L* over Σ and two strings $x, y \in \Sigma^*$ we say that *x* and *y* are distinguishable with respect to *L* if there is a string $w \in \Sigma^*$ such that exactly one of *xw*, *yw* is in *L*. *x*, *y* are indistinguishable with respect to *L* if there is no such *w*.

Given language *L* over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff *x* and *y* are indistinguishable with respect to *L*.

Definition

 $x \equiv_L y$ means that $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$.

In words: x is equivalent to y under L.

Example: Equivalence classes

Claim

\equiv_L is an equivalence relation over Σ^* . **Proof.**

- Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- Symmetry: $x \equiv_L y$ then $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^*$: $yw \in L \iff xw \in L \implies y \equiv_L x$.
- Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$
 - $\implies \forall w \in \Sigma^* : xw \in L \iff zw \in L$

 $\implies X \equiv_L Z.$

Claim

 \equiv_L is an equivalence relation over Σ^* .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes.

Definition L: A language For a string $x \in \Sigma^*$, let $[x] = [x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}$

be the equivalence class of x according to L.

Definition $[L] = \{[x]_L \mid x \in \Sigma^*\}$ is the set of equivalence classes of *L*.

Claim

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_L then x, y are indistinguishable. Otherwise they are distinguishable. **Lemma** Let x, y be two distinct strings.

 $x \equiv_L y \iff x, y$ are indistinguishable for L.

Proof. $x \equiv_L y \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^*: xw \in L \text{ and } yw \notin L$

 \implies x and y are distinguishable for L.

Lemma $M = (Q, \Sigma, \delta, s, A)$ a **DFA** for a language L.

For any
$$q \in A$$
, let $L_q = \{w \in \Sigma^* \mid \nabla w = \delta^*(s, w) = q\}.$

Then, there exists a string x, such that $L_q \subseteq [x]_L$.

General idea behind algorithm:

Base case: Given two states, if *p* and *q*, if one accepts and the other rejects, then they are not equivalent.

Recursion: Assuming $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$, if $p' \neq q'$ then $p \neq q$
An inefficient automata

