
Pre-lecture brain teaser

L′ = {bitstrings with equal number of 0s and 1s}

L = {0n1n | n ≥ 0}

Suppose we have already shown that L′ is non-regular. Can we
show L is regular via closure.
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Non-regularity via closure properties

L′ = {bitstrings with equal number of 0s and 1s}

L = {0n1n | n ≥ 0}

Suppose we have already shown that L′ is non-regular. Can we
show L is regular via closure.

Can we show that L is non-regular from scratch?
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Proving non-regularity: Methods

• Pumping lemma. We will not cover it but it is sometimes
an easier proof technique to apply, but not as general as
the fooling set technique.

• Closure properties. Use existing non-regular languages
and regular languages to prove that some new language is
non-regular.

• Fooling sets- Method of distinguishing suffixes. To prove
that L is non-regular find an infinite fooling set.
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Pre-lecture brain teaser

We have a language L = {0n1n|n ≥ 0}
Prove that L is non-regular.
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Not all languages are regular



Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions
are the same.

Question: Is every language a regular language? No.

• Each DFA M can be represented as a string over a finite
alphabet Σ by appropriate encoding

• Hence number of regular languages is countably infinite
• Number of languages is uncountably infinite
• Hence there must be a non-regular language!
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A Simple and Canonical Non-regular Language

L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, · · · , }

Theorem
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require
counting number of zeros in input which cannot be done with
fixed memory.

How do we formalize intuition and come up with a formal
proof?
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Proof by contradiction

• Suppose L is regular. Then there is a DFA M such that
L(M) = L.

• Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

q00start q10 q20 · · · qn qn+1

· · ·
q111 q112

q212

qreject

1

1

0,1 0
0,1

0 0

1

0

1

1

0 0
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Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that
L(M) = L.

• Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

Consider strings ε, 0, 00, 000, · · · , 0n total of n+ 1 strings.

What states does M reach on the above strings? Let
qi = δ∗(s, 0i).

By pigeon hole principle qi = qj for some 0 ≤ i < j ≤ n.
That is, M is in the same state after reading 0i and 0j where
i 6= j.

M should accept 0i1i but then it will also accept 0j1i where i 6= j.

This contradicts the fact that M accepts L. Thus, there is no DFA
for L.
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When two states are equivalent?



States that cannot be combined?

q00start q10 q20 · · · qn qn+1

· · ·
q111 q112

q212

qreject

1

1

0,1 0
0,1

0 0

1

0

1

1

0 0

We concluded that because each 0i prefix has a unique state.
Are there states that aren’t unique?
Can states be combined?
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Equivalence between states

Definition
M = (Q,Σ, δ, s,A): DFA.

Two states p,q ∈ Q are equivalent if
for all strings w ∈ Σ∗, we have that

δ∗(p,w) ∈ A ⇐⇒ δ∗(q,w) ∈ A.

One can merge any two states that
are equivalent into a single state.

q0start q2

q1

q3

q4

0

1

00

0 1

1

1

0,1
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Distinguishing between states

Definition
M = (Q,Σ, δ, s,A): DFA.

Two states p,q ∈ Q are
distinguishable if there exists a string
w ∈ Σ∗, such that

δ∗(p,w) ∈ A and δ∗(q,w) /∈ A.

or

δ∗(p,w) /∈ A and δ∗(q,w) ∈ A.

q0start q2

q1

q3

q4

0

1

00

0 1

1

1

0,1
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Distinguishable prefixes

M = (Q,Σ, δ, s,A): DFA

Idea: Every string w ∈ Σ∗ defines a state ∇w = δ∗(s,w).

Definition
Two strings u,w ∈ Σ∗ are distinguishable for M (or L(M)) if ∇u
and ∇w are distinguishable.

Definition (Direct restatement)
Two prefixes u,w ∈ Σ∗ are distinguishable for a language L if
there exists a string x, such that ux ∈ L and wx /∈ L (or ux /∈ L
and wx ∈ L).
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Distinguishable means different states

Lemma
L: regular language.

M = (Q,Σ, δ, s,A): DFA for L.

If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x) ∈ Q and ∇y = δ∗(s, y) ∈ Q
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Proof by a figure

Possible Not possible

sstart

δ∗(s, x)

δ∗(s, y)

δ∗(s, xw)

δ∗(s, yw)

x

y

w

w

sstart δ∗(s, x) =
δ∗(s, y)

δ∗(s, xw)

δ∗(s, yw)

x

y

w

w
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Distinguishable strings means different states: Proof

Lemma
L: regular language.

M = (Q,Σ, δ, s,A): DFA for L.

If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Proof.
Assume for the sake of contradiction that ∇x = ∇y.

By assumption ∃w ∈ Σ∗ such that ∇xw ∈ A and ∇yw /∈ A.

=⇒ A 3 ∇xw = δ∗(s, xw) = δ∗(∇x,w)= δ∗(∇y,w)
= δ∗(s, yw) = ∇yw /∈ A.

=⇒ A 3 ∇yw /∈ A. Impossible!

Assumption that ∇x = ∇y is false.
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Review questions...

• Prove for any i 6= j then 0i and 0j are distinguishable for
the language {0n1n | n ≥ 0}.

• Let L be a regular language, and let w1, . . . ,wk be strings
that are all pairwise distinguishable for L. Prove any DFA
for L must have at least k states.

• Prove that {0n1n | n ≥ 0} is not regular.
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Fooling sets: Proving non-regularity



Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0n1n | n ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than |F| states.
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Recall

Already proved the following lemma:

Lemma
L: regular language.

M = (Q,Σ, δ, s,A): DFA for L.

If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x).

18



Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.

Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.

Let qi = ∇wi = δ∗(s, xi).

By lemma qi 6= qj for all i 6= j.

As such, |Q| ≥ |{q1, . . . ,qm}| = |{w1, . . . ,wm}| = |A|.
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Infinite Fooling Sets

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that
every pair of them are distinguishable.

Assume for contradiction that ∃ M a DFA for L.

Let Fi = {w1, . . . ,wi}.

By theorem, # states of M ≥ |Fi| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not
finite.
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Examples

• {0n1n | n ≥ 0}

• {bitstrings with equal number of 0s and 1s}
Can use the same fooling set as before: Same logic.
0i1i ∈ L and 0j1i /∈ L so ∇0i and ∇0j are distinguishable
and so L is not regular.

• {0k1` | k 6= `}
Similar logic. 0i1i /∈ L and 0j1i ∈ L so ∇0i and ∇0j are
distinguishable and so L is not regular.
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Examples

L = {strings of properly matched open and closing parentheses}
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Examples

L = {palindromes over the binary alphabetΣ = {0, 1}}
A palindrome is a string that is equal to its reversal, e.g. 10001
or 0110.
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Exponential gap in number of states
between DFA and NFA sizes



Exponential gap between NFA and DFA size

L4 = {w ∈ {0, 1}∗ | w has a 1 located 4 positions from the end}

DFA:

q
q1000

 0 

q0001

 1 

q1001
q0010  0 

q0011

 1 

q1100

 0  1 

q1101

q1010 0 

q1011 1 

q0100  0 

q0101 1 

q0110  0 
q0111

 1 

q1110

 0 

 1 

q1111
 0 

 1 

 0 

 1 

 0 

 1 

 0 

 1 
 0 

 1 

 0 

 1 
 0 

 1 

 0 

 1 

 0 

 1 

NFA:
q q4

 0,1 

q1 1 q2 0, 1 q3 0, 1  0, 1 
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Exponential gap between NFA and DFA size

Lk = {w ∈ {0, 1}∗ | w has a 1 k positions from the end}

Recall that Lk is accepted by a NFA N with k+ 1 states.

Theorem
Every DFA that accepts Lk has at least 2k states.

Claim
F = {w ∈ {0, 1}∗ : |w| = k} is a fooling set of size 2k for Lk.

Why?
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How do pick a fooling set

How do we pick a fooling set F?

• If x, y are in F and x 6= y they should be distinguishable! Of
course.

• All strings in F except maybe one should be prefixes of
strings in the language L.
For example if L = {0k1k | k ≥ 0} do not pick 1 and 10 (say).
Why?

26



Myhill-Nerode Theorem



One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique
(up to naming) minimal automata, and it can be computed
efficiently once any DFA is given for L.
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Indistinguishably

Recall:

Definition
For a language L over Σ and two strings x, y ∈ Σ∗ we say that x
and y are distinguishable with respect to L if there is a string
w ∈ Σ∗ such that exactly one of xw, yw is in L. x, y are
indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation ≡L over strings in Σ∗

as follows: x ≡L y iff x and y are indistinguishable with respect
to L.

Definition
x ≡L y means that ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L.

In words: x is equivalent to y under L.
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Example: Equivalence classes

q0

q1 0 

q2

 0 

 0 
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Indistinguishability

Claim
≡L is an equivalence relation over Σ∗.
Proof.

• Reflexive: ∀x ∈ Σ∗: ∀w ∈ Σ∗: xw ∈ L ⇐⇒ xw ∈ L.
=⇒ x ≡L x.

• Symmetry: x ≡L y then ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
∀w ∈ Σ∗: yw ∈ L ⇐⇒ xw ∈ L =⇒ y ≡L x .

• Transitivity: x ≡L y and y ≡L z
∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L and ∀w ∈ Σ∗: yw ∈ L ⇐⇒
zw ∈ L
=⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ zw ∈ L
=⇒ x ≡L z.
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Equivalences over automatas...

Claim
≡L is an equivalence relation over Σ∗.
Therefore, ≡L partitions Σ∗ into a collection of equivalence
classes.

Definition
L: A language For a string x ∈ Σ∗, let

[x] = [x]L = {y ∈ Σ∗ | x ≡L y}

be the equivalence class of x according to L.

Definition
[L] = {[x]L | x ∈ Σ∗} is the set of equivalence classes of L.
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Claim

Claim
Let x, y be two distinct strings. If x, y belong to the same
equivalence class of ≡L then x, y are indistinguishable.
Otherwise they are distinguishable.
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Strings in the same equivalence class are indistinguishable

Lemma
Let x, y be two distinct strings.

x ≡L y ⇐⇒ x, y are indistinguishable for L.

Proof.
x ≡L y =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L

x and y are indistinguishable for L.

x 6≡L y =⇒ ∃w ∈ Σ∗: xw ∈ L and yw 6∈ L

=⇒ x and y are distinguishable for L.
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All strings arriving at a state are in the same class

Lemma
M = (Q,Σ, δ, s,A) a DFA for a language L.

For any q ∈ A, let Lq = {w ∈ Σ∗ | ∇w = δ∗(s,w) = q}.

Then, there exists a string x, such that Lq ⊆ [x]L.
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An inefficient automata

General idea behind algorithm:

Base case: Given two states, if p and q, if one accepts and the
other rejects, then they are not equivalent.

Recursion: Assuming p a−→ p′ and q a−→ q′, if p′ 6≡q′ then p 6≡q
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An inefficient automata

q0

q1 0 q3 q4
 0 

q2 0  0 

q5

 0 

 0 

q0 q1 q2 q3 q4 q5
q1
q2
q3
q4
q5
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