
Pre-lecture brain teaser

Assume L is any regular language. Let’s define a new language:

Definition
Flip(L) = {w̄ | w ∈ L, x ∈ Σ∗}
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Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying
op to any elements of A results in an element that also
belongs to A.

Examples:

• Integers: closed under +, −, ∗, but not division.
• Positive integers: closed under + but not under −
• Regular languages: closed under union, intersection,
Kleene star, complement, difference, homomorphism,
inverse homomorphism, reverse, . . .
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Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Three broad approaches

• Use existing closure properties
• L1, L2, L3, L4 regular implies (L1 − L2) ∩ (L̄3 ∪ L4)∗ is regular

• Transform regular expressions
• Transform DFAs to NFAs — versatile technique and shows
the power of nondeterminism
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Homomorphism closure

Let’s look back at the pre-lecture teaser. Define a function

h(x) =
{
1 x = 0
0 x = 1

This is known as a homomorphism - A cipher that is a
one-to-one mapping to one character set to another.

How do we prove h(L) is regular if L is regular?

6



Homomorphism closure

Proof Idea:

1. Suppose R is a regular expression for L.
2. We define Flip(L) = LF as a regular expression based off
the regular expression for L (using a finite number of
concatenations, unions and Kleene Star)

3. Thus LF is regular because it has a regular expression.

Thus we reduce the argument to L(h(R)) = h(L(R))
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Homomorphism closure

Let’s define the regular expression inductively by transforming
the operations in R. We see that:

• Base Case: Zero operators in R means that R =: a ∈ Σ, ε,
∅. In any case we define RF = h(R)

• Otherwise R has three potential types of operators to
transform. Splitting R at an operator we see:

• h(R1R2) = h(R1) · h(R2)
• h(R1 ∪ R2) = h(R1) ∪ h(R2)
• h(R∗) = (h(R))∗

Hence, since we can define LF via a regular language, LF is
regular.
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Regular Languages

Regular languages have three different characterizations

• Inductive definition via base cases and closure under
union, concatenation and Kleene star

• Languages accepted by DFAs
• Languages accepted by NFAs

Regular language closed under many operations:

• union, concatenation, Kleene star via inductive definition
or NFAs

• complement, union, intersection via DFAs
• homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs.
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Closure problem - Reverse



Example: REVERSE

Given string w, wR is reverse of w.

For a language L define LR = {wR | w ∈ L} as reverse of L.

Theorem
LR is regular if L is regular.

Infinitely many regular languages!

Proof technique:

• take some finite representation of L such as regular
expression r

• Describe an algorithm A that takes r as input and outputs
a regular expression r′ such that L(r′) = (L(r))R.

• Come up with A and prove its correctness.
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REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a
regular expression r′ for LR?

Inductively based on recursive
definition of r.

• r = ∅ or r = a for some a ∈ Σ

• r = r1 + r2
• r = r1 · r2
• r = (r1)∗
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REVERSE via regular expressions

• r = ∅ or r = a for some a ∈ Σ

r′ =
• r = r1 + r2.
If r′1, r′2 are reg expressions for (L(r1))R, (L(r2))R then
r′ =

• r = r1 · r2.
If r′1, r′2 are reg expressions for (L(r1))R, (L(r2))R then
r′ =

• r = (r1)∗.
If r′1 is reg expressions for (L(r1))R then
r′ =

r = (0+ 10)∗(001+ 01)1 then r′ =
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REVERSE via machine transformation

Given DFA M = (Q,Σ, δ, s,A) want NFA N such that
L(N) = (L(M))R.

N should accept wR iff M accepts w

M accepts w iff δ∗M(s,w) ∈ A

Idea:
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REVERSE via machine transformation

q1

q2

q3

q4

q1

q2

q3

q4

s′

ε

ε

Caveat: Reversing transitions may create an NFA.
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REVERSE via machine transformation

Models of Computation Lecture �: Nondeterministic Automata [Sp’��]

• Suppose R = A+ B. The inductive hypothesis implies that there are regular expressions
A
0 and B

0 such that L(A0) = L(A)R and L(B0) = L(B)R. Let R
0 = A

0 + B
0. Then L(R0) =

L(A0)[ L(B0) = L(A)R [ L(B)R = (L(A)[ L(B))R = L
R.

• Suppose R = A• B. The inductive hypothesis implies that there are regular expressions
A
0 and B

0 such that L(A0) = L(A)R and L(B0) = L(B)R. Let R
0 = B

0 • A
0. Then L(R0) =

L(B0) • L(A0) = L(B)R • L(A)R = (L(A) • L(B))R = L
R.

• Finally, supposeR= A
⇤. The inductive hypothesis implies that there is a regular expressionA

0

such that L(A0) = L(A)R. Let R
0 = (A0)⇤. Then L(R0) = L(A0)⇤ = (L(A)R)⇤ = (L(A)⇤)R = L

R.

In all cases, we have constructed a regular expression R
0 such that L(R0) = L

R. We conclude that
L

R is regular. É

Careful readers may be unsatisfied with the previous proof, because it assumes several
“obvious” properties of string and language reversal. Specifically, for all strings x and y and all
languages L and L

0, we assumed the following:

• (x • y)R = y
R • x

R

• (L · L0)R = (L0)R · LR.
• (L [ L

0)R = L
R [ (L0)R.

• (L⇤)R = (LR)⇤.

All of these claims are all easy to prove by inductive definition-chasing.

Proof (DFA to NFA): Let M = (⌃,Q, s, A,�) be an arbitrary DFA that accepts L. We construct
an NFA M

R = (⌃,QR, s
R, A

R,�R) with "-transitions that accepts L
R, intuitively by reversing every

transition in M , and swapping the roles of the start state and the accepting states. Because
M does not have a unique accepting state, we need to introduce a special start state s

R, with
"-transitions to each accepting state in M . These are the only "-transitions in M

R.

Q
R =Q [ {sR}

A
R = {s}

�R(sR,") = A

�R(sR, a) = ? for all a 2 ⌃
�R(q,") = ? for all q 2Q

�R(q, a) =
�

p

�� q 2 �(p, a)
 

for all q 2Q and a 2 ⌃

Routine inductive definition-chasing now implies that the reversal of any sequence q0�q1� · · ·�q`

of transitions in M is a valid sequence q`�q`�1� · · ·�q0 of transitions in M
R. Because the

transitions retain their labels (but reverse directions), it follows that M accepts any string w if
and only if M

R accepts w
R.

We conclude that the NFA M
R accepts L

R, so L
R must be regular. É

Lemma �.�. For any regular language L, the language half(L) := {w | ww 2 L} is also regular.

Proof: Let M = (⌃,Q, s, A,�) be an arbitrary DFA that accepts L.
Intuitively, we construct an NFA M

0 that reads its input string w and simulates the original
DFA M reading the input string ww. Our overall strategy has three parts:

��
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REVERSE via machine transformation

Formal proof: two directions

• w ∈ L(M) implies wR ∈ L(N). Sketch. Let δ∗M(s,w) = q where
q ∈ A. On input wR N non-deterministically transitions
from its start state s′ to q on an ε transition, and traces the
reverse of the walk of M on wR and hence reaches s which
is an accepting state of N. Thus N accepts wR

• u ∈ L(N) implies uR ∈ L(M). Sketch. If u ∈ N it implies that
s′ transitioned to some q ∈ A on ε transition and
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Closure Problem - Cycle



A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Example: L = {abc, 374a}

CYCLE(L) =

17



A more complicated example: CYCLE

CYCLE(L) = {yx | x, y ∈ Σ∗, xy ∈ L}

Theorem
CYCLE(L) is regular if L is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

• N is a finite state machine, cannot know split of w into xy
and yet has to simulate M on x and y.

• Exploit fact that M is itself a finite state machine. N only
needs to “know” the state δ∗M(s, x) and there are only finite
number of states in M
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Construction for CYCLE

Let w = xy and w′ = yx.

• N guesses state q = δ∗M(s, x) and simulates M on w′ with
start state q.

• N guesses when y ends (at that point M must be in an
accept state) and transitions to a copy of M to simulate M
on remaining part of w′ (which is x)

• N accepts w′ if after second copy of M on x it ends up in
the guessed state q
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Construction for CYCLE
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Proving correctness

Exercise: Write down formal description of N in tuple notation
starting with M = (Q,Σ, δ, s,A).

Need to argue that L(N) = CYCLE(L(M))

• If w = xy accepted by M then argue that yx is accepted by
N

• If N accepts w′ then argue that w′ = yx such that xy
accepted by M.
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Closure Problem - Prefix



Example: PREFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

Create new DFA M′ = (Q,Σ, δ, s, Z)

Claim: L(M′) = PREFIX(L).
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Exercise: SUFFIX

Let L be a language over Σ.

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Prove the following:

Theorem
If L is regular then SUFFIX(L) is regular.

Same idea as PREFIX(L)

X = {q ∈ Q | s can reach q in M}
Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y

With one major difference:
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Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

L1 = {0n1n | n ≥ 0}

L2 = {w ∈ {0, 1}∗ | #0(w) = #1(w)}

L3 = {0i1j | i 6= j}

L1 is not regular. Can we use that fact to prove L2 and L2 are not
regular without going through the fooling set argument?

L1 = L2 ∩ 0∗1∗ hence if L2 is regular then L1 is regular, a
contradiction.

L1 = L̄3 ∩ 0∗1∗ hence if L3 is regular then L1 is regular, a
contradiction
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