Definition Flip(L) = { $\overline{w} \mid w \in L, x \in \Sigma^*$ }

CS/ECE-374: Lecture 6 - Regular Languages -Closure Properties

Lecturer: Nickvash Kani Chat moderator: Samir Khan February 11, 2021

University of Illinois at Urbana-Champaign

Definition Flip(L) = { $\overline{w} \mid w \in L, x \in \Sigma^*$ }

Definition Flip(L) = { $\overline{w} \mid w \in L, x \in \Sigma^*$ }

Yes

Definition Flip(L) = { $\overline{w} \mid w \in L, x \in \Sigma^*$ }

Yes Next problem.

Definition $L^R = \{w^R \mid w \in L\}$

Definition $L^R = \{w^R \mid w \in L\}$

Also yes.

Definition

(Informal) A set A is **closed** under an operation **op** if applying **op** to any elements of A results in an element that also belongs to A.

Definition

(Informal) A set A is **closed** under an operation **op** if applying **op** to any elements of A results in an element that also belongs to A.

Examples:

- *Integers:* closed under +, -, *, but not division.
- Positive integers: closed under + but not under -
- *Regular languages*: closed under union, intersection, Kleene star, complement, difference, homomorphism, inverse homomorphism, reverse, ...

Three broad approaches

• Use existing closure properties

Three broad approaches

- Use existing closure properties
 - L_1, L_2, L_3, L_4 regular implies $(L_1 L_2) \cap (\overline{L_3} \cup L_4)^*$ is regular

Three broad approaches

- Use existing closure properties
 - L_1, L_2, L_3, L_4 regular implies $(L_1 L_2) \cap (\overline{L_3} \cup L_4)^*$ is regular
- Transform regular expressions

Three broad approaches

- Use existing closure properties
 - L_1, L_2, L_3, L_4 regular implies $(L_1 L_2) \cap (\overline{L_3} \cup L_4)^*$ is regular
- Transform regular expressions
- Transform DFAs to NFAs versatile technique and shows the power of nondeterminism

Let's look back at the pre-lecture teaser. Define a function

$$h(x) = \begin{cases} 1 & x = 0 \\ 0 & x = 1 \end{cases}$$

This is known as a homomorphism - A cipher that is a one-to-one mapping to one character set to another.

How do we prove h(L) is regular if L is regular?

Proof Idea:

- 1. Suppose *R* is a regular expression for L.
- We define Flip(L) = L^F as a regular expression based off the regular expression for L (using a finite number of concatenations, unions and Kleene Star)
- 3. Thus L^F is regular because it has a regular expression.

Thus we reduce the argument to L(h(R)) = h(L(R))

Let's define the regular expression inductively by transforming the operations in *R*. We see that:

- **Base Case:** Zero operators in *R* means that $R =: a \in \Sigma$, ε , \emptyset . In any case we define $R^F = h(R)$
- Otherwise *R* has three potential types of operators to transform. Splitting *R* at an operator we see:
 - $h(R_1R_2) = h(R_1) \cdot h(R_2)$
 - $h(R_1 \cup R_2) = h(R_1) \cup h(R_2)$
 - $h(R^*) = (h(R))^*$

Hence, since we can define L^F via a regular language, L^F is regular.

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- \cdot Languages accepted by NFAs

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.

Closure problem - Reverse

Given string w, w^R is reverse of w.

For a language *L* define $L^R = \{w^R \mid w \in L\}$ as reverse of *L*.

Theorem

L^R is regular if L is regular.

Given string w, w^R is reverse of w.

For a language *L* define $L^R = \{w^R \mid w \in L\}$ as reverse of *L*.

Theorem *L^R* is regular if *L* is regular.

Infinitely many regular languages!

Proof technique:

- take some finite representation of *L* such as regular expression *r*
- Describe an algorithm A that takes r as input and outputs a regular expression r' such that $L(r') = (L(r))^R$.
- Come up with A and prove its correctness.

Suppose *r* is a regular expression for *L*. How do we create a regular expression r' for L^R ?

Suppose *r* is a regular expression for *L*. How do we create a regular expression r' for L^R ? Inductively based on recursive definition of *r*.

- $\cdot r = \emptyset$ or r = a for some $a \in \Sigma$
- $r = r_1 + r_2$
- $r = r_1 \cdot r_2$
- $r = (r_1)^*$

REVERSE via regular expressions

- $r = \emptyset$ or r = a for some $a \in \Sigma$ r' =
- $r = r_1 + r_2$. If r'_1, r'_2 are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then r' =
- $r = r_1 \cdot r_2$. If r'_1, r'_2 are reg expressions for $(L(r_1))^R, (L(r_2))^R$ then r' =
- $r = (r_1)^*$. If r'_1 is reg expressions for $(L(r_1))^R$ then r' =
- $r = (0 + 10)^*(001 + 01)1$ then r' =

Given DFA $M = (Q, \Sigma, \delta, s, A)$ want NFA N such that $L(N) = (L(M))^{R}$.

N should accept w^R iff M accepts w

```
M accepts w iff \delta^*_M(s, w) \in A
```

```
Idea:
```

REVERSE via machine transformation

Caveat: Reversing transitions may create an NFA.

Proof (DFA to NFA): Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts *L*. We construct an NFA $M^R = (\Sigma, Q^R, s^R, A^R, \delta^R)$ with ε -transitions that accepts L^R , intuitively by reversing every transition in *M*, and swapping the roles of the start state and the accepting states. Because *M* does not have a unique accepting state, we need to introduce a special start state s^R , with ε -transitions to each accepting state in *M*. These are the only ε -transitions in M^R .

$$\begin{split} Q^{R} &= Q \cup \{s^{R}\} \\ A^{R} &= \{s\} \\ \delta^{R}(s^{R}, \varepsilon) &= A \\ \delta^{R}(s^{R}, a) &= \emptyset & \text{for all } a \in \Sigma \\ \delta^{R}(q, \varepsilon) &= \emptyset & \text{for all } q \in Q \\ \delta^{R}(q, a) &= \{p \mid q \in \delta(p, a)\} & \text{for all } q \in Q \text{ and } a \in \Sigma \end{split}$$

Routine inductive definition-chasing now implies that the reversal of any sequence $q_0 \rightarrow q_1 \rightarrow \cdots \rightarrow q_\ell$ of transitions in M is a valid sequence $q_\ell \rightarrow q_{\ell-1} \rightarrow \cdots \rightarrow q_0$ of transitions in M^R . Because the transitions retain their labels (but reverse directions), it follows that M accepts any string w if and only if M^R accepts w^R .

We conclude that the NFA M^R accepts L^R , so L^R must be regular.

Formal proof: two directions

• $w \in L(M)$ implies $w^R \in L(N)$. Sketch. Let $\delta^*_M(s, w) = q$ where $q \in A$. On input $w^R N$ non-deterministically transitions from its start state s' to q on an ϵ transition, and traces the reverse of the walk of M on w^R and hence reaches s which is an accepting state of N. Thus N accepts w^R

• $u \in L(N)$ implies $u^R \in L(M)$. Sketch. If $u \in N$ it implies that s' transitioned to some $q \in A$ on ϵ transition and

Closure Problem - Cycle

A more complicated example: CYCLE

$$CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$$

Theorem CYCLE(L) is regular if L is regular.

Example: $L = \{abc, 374a\}$

CYCLE(L) =

A more complicated example: CYCLE

$$CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$$

Theorem CYCLE(L) is regular if L is regular. $CYCLE(L) = \{yx \mid x, y \in \Sigma^*, xy \in L\}$

Theorem CYCLE(L) is regular if L is regular.

Given DFA *M* for *L* create NFA *N* that accepts *CYCLE(L)*.

- *N* is a finite state machine, cannot know split of *w* into *xy* and yet has to simulate *M* on *x* and *y*.
- Exploit fact that M is itself a finite state machine. N only needs to "know" the state δ^{*}_M(s, x) and there are only finite number of states in M

Construction for CYCLE

Let w = xy and w' = yx.

- *N* guesses state $q = \delta_M^*(s, x)$ and simulates *M* on *w'* with start state *q*.
- N guesses when y ends (at that point M must be in an accept state) and transitions to a copy of M to simulate M on remaining part of w' (which is x)
- *N* accepts *w*′ if after second copy of *M* on *x* it ends up in the guessed state *q*

Construction for CYCLE

Proving correctness

Exercise: Write down formal description of *N* in tuple notation starting with $M = (Q, \Sigma, \delta, s, A)$.

Need to argue that L(N) = CYCLE(L(M))

- If w = xy accepted by M then argue that yx is accepted by N
- If *N* accepts *w'* then argue that *w'* = *yx* such that *xy* accepted by *M*.

Closure Problem - Prefix

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$ $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$ $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$ $Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Definition PREFIX(L) = { $w \mid wx \in L, x \in \Sigma^*$ }

Theorem If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$ $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$ $Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: L(M') = PREFIX(L).

Definition SUFFIX(L) = { $w \mid xw \in L, x \in \Sigma^*$ }

Prove the following:

Theorem If L is regular then SUFFIX(L) is regular.

Definition SUFFIX(L) = { $w \mid xw \in L, x \in \Sigma^*$ }

Prove the following:

Theorem If L is regular then SUFFIX(L) is regular.

Same idea as PREFIX(L)

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$ $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$ $Z = X \cap Y$

With one major **difference**:

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above. For instance: We can also prove non-regularity using the techniques above. For instance:

$$L_{1} = \{0^{n}1^{n} \mid n \ge 0\}$$
$$L_{2} = \{w \in \{0, 1\}^{*} \mid \#_{0}(w) = \#_{1}(w)\}$$
$$L_{3} = \{0^{i}1^{j} \mid i \ne j\}$$

We can also prove non-regularity using the techniques above. For instance:

$$L_{1} = \{0^{n}1^{n} \mid n \ge 0\}$$

$$L_{2} = \{w \in \{0, 1\}^{*} \mid \#_{0}(w) = \#_{1}(w)\}$$

$$L_{3} = \{0^{i}1^{j} \mid i \ne j\}$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

We can also prove non-regularity using the techniques above. For instance:

$$L_{1} = \{0^{n}1^{n} \mid n \ge 0\}$$

$$L_{2} = \{w \in \{0, 1\}^{*} \mid \#_{0}(w) = \#_{1}(w)\}$$

$$L_{3} = \{0^{i}1^{j} \mid i \ne j\}$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^{*1^*}$ hence if L_2 is regular then L_1 is regular, a contradiction.

We can also prove non-regularity using the techniques above. For instance:

$$L_{1} = \{0^{n}1^{n} \mid n \ge 0\}$$

$$L_{2} = \{w \in \{0, 1\}^{*} \mid \#_{0}(w) = \#_{1}(w)\}$$

$$L_{3} = \{0^{i}1^{j} \mid i \ne j\}$$

 L_1 is not regular. Can we use that fact to prove L_2 and L_2 are not regular without going through the fooling set argument?

 $L_1 = L_2 \cap 0^{*1^*}$ hence if L_2 is regular then L_1 is regular, a contradiction.

 $L_1 = \overline{L_3} \cap 0^*1^*$ hence if L_3 is regular then L_1 is regular, a contradiction