Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000.
CS/ECE-374: Lecture 4 - NFAs

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 04, 2021

University of Illinois at Urbana-Champaign
Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

If we want subsequence 111000

If don't want ss 111000
Simplifying DFAs

Start: q_0

- q_0: 0
- q_1: 1
- q_2: 1
- q_3: 0
- q_4: 0
- q_5: 0
- q_6: 0,1
Simplifying DFAs

What if we draw the above figure as:
Simplifying DFAs

What if we draw the above figure as:

$$L = 1 + 11 + 111 + 1110 + 11100$$

What does this mean?

$$w = \frac{0}{5} 11 0 111000 110 \ldots$$
Non-deterministic finite automata (NFA) Introduction
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic **is not** deterministic.
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not deterministic.

But first…. what the heck is non-determinism?
Non-determinism in computing

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.
NFA acceptance: Example

• Is 010110 accepted?
NFA acceptance: Example

Is 010110 accepted?
NFA acceptance: Example

• Is 010110 accepted? Yes
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted? No
NFA acceptance: Example

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted? **Yes**
• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted? **Yes**
NFA acceptance: Example

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

All w with "11" or "101" as substring
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.
Formal definition of NFA
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),

\[
\begin{align*}
(\text{Q, } \Sigma, \delta, s, A)
\end{align*}
\]
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{ \varepsilon \} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),

\[\mathcal{P}(Q)? \]
Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example

$Q = \{1, 2, 3, 4\}$

$$
\mathcal{P}(Q) = \left\{ \begin{array}{c}
\{1, 2, 3, 4\}, \\
\{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\
\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\
\{1\}, \{2\}, \{3\}, \{4\}, \\
\{\} \\
\end{array} \right\}
$$
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),

\[
\delta(q, a) = \{q_0, q_2\} \\
\text{a is character}
\]
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
- \(s \in Q \) is the start state,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
- \(s \in Q \) is the start state,
- \(A \subseteq Q \) is the set of accepting/final states.

\(\delta(q, a) \) for \(a \in \Sigma \cup \{\varepsilon\} \) is a subset of \(Q \) — a set of states.
Example

\[Q = \{ q_0, q_1, q_2, q_3 \} \]
\[\Sigma = \{ 0, 1 \} \]
\[\delta = \begin{array}{ccc}
\varepsilon & 0 & 1 \\
q_0 & q_0 & q_0, q_1, q_2, q_3 \\
q_1 & q_2, q_3 & q_2, q_3 \\
q_2 & q_3 & q_3 \\
q_3 & q_2, q_3 & q_2, q_3 \\
\end{array} \]
\[s = q_0 \]
\[A = \{ q_3 \} \]
Extending the transition function to strings
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
Extending the transition function to strings

- NFA \(N = (Q, \Sigma, \delta, s, A) \)
- \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{\varepsilon\} \).
Extending the transition function to strings

- NFA \(N = (Q, \Sigma, \delta, s, A) \)
- \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{\varepsilon\} \).
- Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)
Extending the transition function to strings

- NFA \(N = (Q, \Sigma, \delta, s, A) \)
- \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{ \varepsilon \} \).
- Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)
- \(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.
Extending the transition function to strings

Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q$: ε-reach$(X) = \bigcup_{x \in X} \varepsilon$-reach$(x)$.
Extending the transition function to strings

ϵ\text{reach}(q)$: set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$\text{reach}(q)$
Extending the transition function to strings

ϵ\text{reach}(q)$: set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of δ^* : $Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:
 \[
 \delta^*(q, a) = \epsilon\text{reach} \left(\bigcup_{p \in \epsilon\text{reach}(q)} \delta(p, a) \right)
 \]
Extending the transition function to strings

ε\text{reach}(q)$: set of all states that q can reach using only ε-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \varepsilon$\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:
 \[
 \delta^*(q, a) = \varepsilon\text{reach} \left(\bigcup_{p \in \varepsilon\text{reach}(q)} \delta(p, a) \right)
 \]
- if $w = ax$:
 \[
 \delta^*(q, w) = \varepsilon\text{reach} \left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)
 \]
Transition for strings: $w = ax$

$$\delta^*(q, w) = \epsilon\text{reach} \left(\bigcup_{p \in \epsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$

- $R = \epsilon\text{reach}(q)$ \implies $w = ax$

$$\delta^*(q, w) = \epsilon\text{reach} \left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right)$$

- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.

- $\delta^*(q, w) = \epsilon\text{reach} \left(\bigcup_{r \in N} \delta^*(r, x) \right)$
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
What is:

\[\delta^*(s, \epsilon) = \{ d, e, s \} \]
What is:

- \(\delta^*(s, \varepsilon) = \)
- \(\delta^*(s, 0) = \{ s, b \} \)
What is:

\[
\delta^*(s, \varepsilon) =
\]

\[
\delta^*(s, 0) =
\]

\[
\delta^*(b, 0) = \{c, d, a, g\}
\]
Example

What is:

- $\delta^*(s, \epsilon) =$
- $\delta^*(s, 0) =$
- $\delta^*(b, 0) =$
- $\delta^*(b, 00) = \{b, g\}$
Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Constructing NFAs
DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to “guess and verify” which simplifies design and reduces number of states.
- Easy proofs of some closure properties.
Strings that represent decimal numbers.
Examples: (154) 345.75332, 534677567.1
Strings that represent valid C comments.

Examples:
* Comment 1 *\
\\Comment 2
Example

$L_3 = \{\text{bitstrings that have a } 1 \text{ three positions from the end}\}$
A simple transformation

Theorem
For every NFA \(N \) there is another NFA \(N' \) such that \(L(N) = L(N') \) and such that \(N' \) has the following two properties:

- \(N' \) has single final state \(f \) that has no outgoing transitions
- The start state \(s \) of \(N \) is different from \(f \)

\[
L = \{01, \epsilon\}
\]
Theorem
For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’s?
A simple transformation

Hint: Consider the $L = 01 + 10$.
Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that
$L(N) = L(N_1) \cup L(N_2)$.
Closure under concatenation

Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

\[w_1 z w_2 \]
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^$.***
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
NFAs capture Regular Languages
Example

\[(\varepsilon + 0)(1+10)^*\]
Final NFA simplified slightly to reduce states
Last thought
Do all NFAs have a corresponding DFA?
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.