Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000.
Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000
What if we draw the above figure as:

What does this mean?
What if we draw the above figure as:
Simplifying DFAs

What if we draw the above figure as:

What does this mean?
Non-deterministic finite automata (NFA) Introduction
When you come to a fork in the road, take it.
When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic **is not** deterministic.
When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not deterministic.

But first.... what the heck is non-determinism?
Non-determinism in computing

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.
Informal definition: An NFA N *accepts a string* w iff some accepting state is reached by N from the start state on input w.

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.
NFA acceptance: Example

- Is 010110 accepted?
NFA acceptance: Example

Is 010110 accepted?
• Is 010110 accepted?
• Is 010110 accepted?
• Is 010 accepted?
NFA acceptance: Example

- Is **010110** accepted?
- Is **010** accepted?
- Is **101** accepted?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

Comment:
Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?
• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Formal definition of NFA
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
Definition

A **non-deterministic finite automata (NFA)** $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called **states**,
- Σ is a finite set called the **input alphabet**,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the **transition function** (here $\mathcal{P}(Q)$ is the power set of Q),

\[\mathcal{P}(Q) \]
Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example

$Q = \{1, 2, 3, 4\}$

$\mathcal{P}(Q) = \{\{1, 2, 3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1\}, \{2\}, \{3\}, \{4\}, \{\}\}$
Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)).
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
- \(s \in Q \) is the start state,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Example

- $Q =$
- $\Sigma =$
- $\delta =$

- $s =$
- $A =$
Extending the transition function to strings
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition
For NFA \(N = (Q, \Sigma, \delta, s, A) \) and \(q \in Q \) the \(\varepsilon \text{reach}(q) \) is the set of all states that \(q \) can reach using only \(\varepsilon \)-transitions.
Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q$: ε-reach(X) = $\bigcup_{x \in X} \varepsilon$-reach($x$).
Extending the transition function to strings

ϵreach(q): set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$reach($q$)
Extending the transition function to strings

$\epsilon\text{reach}(q)$: set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:

$$\delta^*(q, a) = \epsilon\text{reach} \left(\bigcup_{p \in \epsilon\text{reach}(q)} \delta(p, a) \right)$$
Extending the transition function to strings

$\varepsilon\text{reach}(q)$: set of all states that q can reach using only ε-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \varepsilon\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:
 \[
 \delta^*(q, a) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \delta(p, a) \right)
 \]
- if $w = ax$:
 \[
 \delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)
 \]
Transition for strings: \(w = ax \)

\[
\delta^*(q, w) = \epsilonreach \left(\bigcup_{p \in \epsilonreach(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)
\]

- \(R = \epsilonreach(q) \Rightarrow \)

\[
\delta^*(q, w) = \epsilonreach \left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right)
\]

- \(N = \bigcup_{p \in R} \delta^*(p, a) \): All the states reachable from \(q \) with the letter \(a \).

- \(\delta^*(q, w) = \epsilonreach \left(\bigcup_{r \in N} \delta^*(r, x) \right) \)
Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
What is:

\[\delta^* (s, \epsilon) = \]

Example
What is:

- \(\delta^*(s, \epsilon) = \)
- \(\delta^*(s, 0) = \)
What is:

\[\delta^*(s, \epsilon) = \]
\[\delta^*(s, 0) = \]
\[\delta^*(b, 0) = \]
What is:

- $\delta^*(s, \epsilon) =$
- $\delta^*(s, 0) =$
- $\delta^*(b, 0) =$
- $\delta^*(b, 00) =$
Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Constructing NFAs
DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to “guess and verify” which simplifies design and reduces number of states
- Easy proofs of some closure properties
Example

Strings that represent decimal numbers.
Examples: 154, 345.75332, 534677567.1
Strings that represent valid C comments.

Examples:
* Comment 1 *\
\\Comment 2
Example

$L_3 = \{\text{bitstrings that have a 1 three positions from the end}\}$
A simple transformation

Theorem
For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f
Theorem
For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’s?
A simple transformation

Hint: Consider the $L = 01 + 10$.
Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that
$L(N) = L(N_1) \cup L(N_2)$.

\[q_1 \quad N_1 \quad f_1 \]
\[q_2 \quad N_2 \quad f_2 \]
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Closure under Kleene star
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
NFAs capture Regular Languages
Example

\((\varepsilon+0)(1+10)^*\)
Example

\[(1+10) \times \varepsilon \times 1 \times 10 \times \varepsilon \]
Example

Final NFA simplified slightly to reduce states
Last thought
Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.