Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

CS/ECE-374: Lecture 4 - NFAs

Lecturer: Nickvash Kani Chat moderator: Samir Khan February 04, 2021

University of Illinois at Urbana-Champaign

Find the regular expression for the language containing all binary strings that **do not** contain the subsequence 111000

Simplifying DFAs

What if we draw the above figure as:

What if we draw the above figure as:

What does this mean?

Non-deterministic finite automata (NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic **is not** deterministic.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic **is not** deterministic.

But first.... what the heck is non-determinism?

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

NFA acceptance: Informal

Informal definition: An NFA *N* accepts a string *w* iff some accepting state is reached by *N* from the start state on input *w*.

NFA acceptance: Informal

Informal definition: An NFA *N* accepts a string *w* iff some accepting state is reached by *N* from the start state on input *w*.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

• Is 010110 accepted?

Is 010110 accepted?

• Is 010110 accepted?

- Is 010110 accepted?
- Is 010 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

Formal definition of NFA

Definition A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

Definition A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

• *Q* is a finite set whose elements are called states,

Definition A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

 $\mathcal{P}(Q)$?

Q: a set. Power set of *Q* is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of *Q*.

Example $Q = \{1, 2, 3, 4\}$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$$

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- *Q* is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q – a set of states.

Example

- $\cdot Q =$
- $\cdot \Sigma =$
- · $\delta =$

• s = • A =

Extending the transition function to strings

Extending the transition function to strings

• NFA $N = (Q, \Sigma, \delta, s, A)$

Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that *N* can go to from *q* on reading $a \in \Sigma \cup \{\varepsilon\}$.

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that *N* can go to from *q* on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that *N* can go to from *q* on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ε -transitions.

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x). ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$:
 $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$:
 $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

• if
$$w = ax$$
:
 $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

Transition for strings: w = ax

$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$$

$$R = \epsilon \operatorname{reach}(q) \implies \\ \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

• $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.

•
$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$$

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

What is:

• $\delta^*(s,\epsilon)$ =

What is:

- $\delta^*(\mathbf{S}, \epsilon)$ =
- $\delta^*(s,0)$ =

What is:

- $\delta^*(\mathbf{S}, \epsilon)$ =
- $\delta^*(s,0)$ =
- $\delta^*(b,0) =$

What is:

- $\delta^*(\mathbf{S}, \epsilon)$ =
- · $\delta^*(s,0)$ =
- $\delta^*(b,0) =$
- $\delta^*(b, 00) =$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Constructing NFAs

DFAs and NFAs

- $\cdot\,$ Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers. Examples: 154, 345.75332, 534677567.1

Strings that represent valid C comments.

Examples: * Comment 1 *\ \\Comment 2 $L_3 = \{$ bitstrings that have a 1 three positions from the end $\}$

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N')and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N')and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the L = 01 + 10.

Closure Properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- \cdot complement

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Theorem For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$. **Theorem** For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Does not work! Why?

NFAs capture Regular Languages

(ε+0)(1+10)^{*}

$$\rightarrow$$
 (ϵ +0) \rightarrow (1+10)^{*}

Final NFA simplified slightly to reduce states

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Yes but it likely won't be pretty.

