Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings with an odd number of 0's

Formulate a language that describes the above problem.

CS/ECE-374: Lecture 3 - DFAs

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 02, 2021
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings with an odd number of 0's

Deterministic-finite-autmata (DFA) Introduction

DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
- Vending machines
- Elevators
- Digital watches
- Simple network protocols
- Programs with fixed memory

A simple program

Program to check if an input string w has odd number of 0's

$$
\begin{aligned}
& \text { int } n=0 \\
& \text { While input is not finished } \\
& \quad \text { read next character } c \\
& \quad \text { If }\left(c \equiv '^{\prime}\right) \\
& \quad n \leftarrow n+1 \\
& \text { endWhile } \\
& \text { If (} n \text { is odd) output YES } \\
& \text { Else output NO }
\end{aligned}
$$

A simple program

Program to check if an input string w has odd number of 0 's

$$
\begin{aligned}
& \text { int } n=0 \\
& \text { While input is not finished } \\
& \quad \text { read next character } c \\
& \quad \text { If }\left(c \equiv '^{\prime}\right) \\
& \quad n \leftarrow n+1 \\
& \text { endWhile } \\
& \text { If (} n \text { is odd) output YES } \\
& \text { Else output NO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bit } x=0 \\
& \text { While input is not finished } \\
& \quad \text { read next character } c \\
& \quad \text { If }\left(c \equiv 0^{\prime}\right) \\
& \qquad x \leftarrow f l i p(x) \\
& \text { endWhile } \\
& \text { If }(x=1) \text { output YES } \\
& \text { Else output NO }
\end{aligned}
$$

Another view

- Machine has input written on a read-only tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine accepts input string if it is in an accepting state after scanning the last symbol.

Graphical representation of DFA

Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in Σ
- For each state (vertex) q and symbol $a \in \Sigma$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as s, q_{0} or "start")
- Some states with double circles labeled as accepting/final states

Graphical Representation

-Where does 001 lead?

Graphical Representation

-Where does 001 lead?
-Where does 10010 lead?

Graphical Representation

-Where does 001 lead?
-Where does 10010 lead?

- Which strings end up in accepting state?

Graphical Representation

-Where does 001 lead?
-Where does 10010 lead?
-Which strings end up in accepting state?

- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

Graphical Representation

Definition
A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Graphical Representation

Definition A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

 The language accepted (or recognized) by a DFA M is denote by $L(M)$ and defined as: $L(M)=\{w \mid M$ accepts $w\}$.Formal definition of DFA

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, S, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_{0} for start state, F for final states.

DFA Notation

$$
M=(\overbrace{Q}, \underbrace{\Sigma}, \overbrace{\delta}, \underbrace{s}, \overbrace{A})
$$

Example

- $Q=$
- $\Sigma=$
- $\delta=$
- $\mathrm{S}=$
- $A=$

Extending the transition function to strings

Extending the transition function to strings

Given DFA $M=(Q, \Sigma, \delta, s, A), \delta(q, a)$ is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that M will reach from q on reading string w

Extending the transition function to strings

Given DFA $M=(Q, \Sigma, \delta, s, A), \delta(q, a)$ is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that M will reach from q on reading string w

Transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(q, w)=q$ if $w=\epsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Formal definition of language accepted by M

Definition
The language $L(M)$ accepted by a DFA $M=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \in A\right\}
$$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)=$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)=$
- $\delta^{*}\left(q_{0}, 1011\right)=$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)=$
- $\delta^{*}\left(q_{0}, 1011\right)=$
- $\delta^{*}\left(q_{1}, 010\right)=$

Constructing DFAs: Examples

DFAs: State = Memory

How do we design a DFA M for a given language L? That is $L(M)=L$.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

DFA Construction: Example I: Basic languages

$$
\text { Assume } \Sigma=\{0,1\}
$$

- $L=\emptyset$
- $L=\Sigma^{*}$
- $L=\{\epsilon\}$
- $L=\{0\}$

DFA Construction: Example II: Length divisible by 5

$$
\begin{aligned}
& \text { Assume } \Sigma=\{0,1\} \\
& L=\left\{w \in\{0,1\}^{*}| | w \mid \text { is divisible by } 5\right\}
\end{aligned}
$$

DFA Construction: Example III: Ends with 01

$$
\begin{aligned}
& \text { Assume } \Sigma=\{0,1\} \\
& L=\left\{w \in\{0,1\}^{*} \mid w \text { ends with } 01\right\}
\end{aligned}
$$

Constructing regular expressions

DFAs to regular expressions

Personal Lemma:

Mastering a concept means being able to do a problem in both direction.

Time to reverse problem direction and find regular expressions using DFAs.

Multiple methods but the ones I'm focusing on:

- State removal method
- Algebraic method

State Removal method

If $q_{1}=\delta\left(q_{0}, x\right)$ and $q_{2}=\delta\left(q_{1}, y\right)$
then $q_{2}=\delta\left(q_{1}, y\right)=\delta\left(\delta\left(q_{0}, x\right), y\right)=\delta\left(q_{0}, x y\right)$

State Removal method - Example

State Removal method - Example

State Removal method - Example

State Removal method - Example

$01+(1+00)(10)^{*}(0+11)$

State Removal method - Example

$01+(1+00)(10)^{*}(0+11)$

$$
\left(01+(1+00)(10)^{*}(0+11)\right)^{*}
$$

Algebraic method

Transition functions are themselves algebraic expressions!
Demarcate states as variables.
Can rewrite $q_{1}=\delta\left(q_{0}, x\right)$ as $q_{1}=q_{0} x$
Solve for accepting state.

Algebraic method - Example

Algebraic method - Example

- $q_{0}=\epsilon+q_{1} 1+q_{2} 0$
- $q_{1}=q_{0} 0$
- $q_{2}=q_{0} 1$
- $q_{3}=q_{1} 0+q_{2} 1+q_{3}(0+1)$

Algebraic method - Example

- $q_{0}=\epsilon+q_{1} 1+q_{2} 0$
- $q_{1}=q_{0} 0$
- $q_{2}=q_{0} 1$
- $q_{3}=q_{1} 0+q_{2} 1+q_{3}(0+1)$

Now we simple solve the system of equations for q_{0} :

$$
\begin{aligned}
& \cdot q_{0}=\epsilon+q_{1} 1+q_{2} 0 \\
& \cdot q_{0}=\epsilon+q_{0} 01+q_{0} 10 \\
& \cdot q_{0}=\epsilon+q_{0}(01+10)
\end{aligned}
$$

Theorem (Arden's Theorem) $R=Q+R P=Q P^{*}$

Algebraic method - Example

- $q_{0}=\epsilon+q_{1} 1+q_{2} 0$
- $q_{1}=q_{0} 0$
- $q_{2}=q_{0} 1$
- $q_{3}=q_{1} 0+q_{2} 1+q_{3}(0+1)$

Now we simple solve the system of equations for q_{0} :

- $q_{0}=\epsilon+q_{1} 1+q_{2} 0$
- $q_{0}=\epsilon+q_{0} 01+q_{0} 10$
- $q_{0}=\epsilon+q_{0}(01+10)$
- $q_{0}=(01+10)^{*}=(01+10)^{*}$

Complement language

Complement

Question: If M is a DFA, is there a DFA M^{\prime} such that $L\left(M^{\prime}\right)=\Sigma^{*} \backslash L(M)$? That is, are languages recognized by DFAs closed under complement?

Complement

Just flip the state of the states!

Complement

Theorem
 Languages accepted by DFAs are closed under complement.

Complement

Theorem

Languages accepted by DFAs are closed under complement.
Proof.
Let $M=(Q, \Sigma, \delta, s, A)$ such that $L=L(M)$.
Let $M^{\prime}=(Q, \Sigma, \delta, s, Q \backslash A)$. Claim: $L\left(M^{\prime}\right)=\bar{L}$. Why?
$\delta_{M}^{*}=\delta_{M^{\prime}}^{*}$. Thus, for every string $w, \delta_{M}^{*}(s, w)=\delta_{M^{\prime}}^{*}(s, w)$.
$\delta_{M}^{*}(s, w) \in A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \notin Q \backslash A$.
$\delta_{M}^{*}(s, w) \notin A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \in Q \backslash A$.

Product Construction

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Example

Example

Cross-product machine

Product construction for intersection

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)
$$

Theorem
$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Create $M=(Q, \Sigma, \delta, s, A)$ where

Product construction for intersection

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)
$$

Theorem
$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Create $M=(Q, \Sigma, \delta, s, A)$ where

- $Q=$
- $\mathrm{S}=$
- δ :
- $A=$

Intersection vs Union

M_{2} :
start $\rightarrow a_{0}^{2}$
$M_{1} \cap M_{2}$

$M_{1} \cup M_{2}$

Product construction for union

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)
$$

Theorem
$L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Create $M=(Q, \Sigma, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=$

