CS/ECE 374: Algorithms \& Models of Computation

Hamiltonian Cycle, 3-Color, Circuit-SAT

Lecture 22
April 27, 2021

Recap

NP: languages that have non-deterministic polynomial time algorithms

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Theorem (Cook-Levin) SAT is NP-Complete.

Pictorial View

P and NP

Possible scenarios:

(1) $\mathrm{P}=\mathrm{NP}$.
(2) $P \neq N P$

P and NP

Possible scenarios:
(1) $\mathrm{P}=\mathrm{NP}$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

P and NP

Possible scenarios:
(1) $\mathrm{P}=\mathrm{NP}$.
(2) $P \neq N P$

Question: Suppose $P \neq N P$. Is every problem in NP $\backslash P$ also NP-Complete?

Theorem (Ladner)
 If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

In fact a hierarcy of problems. However, no natural candidate.

Today

NP-Completeness of three problems:

- Hamiltonian Cycle
- 3-Color
- Circuit SAT

Important: understanding the problems and that they are hard.
Proofs and reductions will be sketchy and mainly to give a flavor

Part I

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices Goal Does G have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does G have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Is the following graph Hamiltonianan?

a No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show 3-SAT \leq_{P} Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has \boldsymbol{n} variables $x_{1}, x_{2}, \ldots, x_{\boldsymbol{n}}$ and \boldsymbol{m} clauses
$C_{1}, C_{2}, \ldots, C_{m}$.

Reduction: First Ideas

- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2^{n} Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

The Reduction: Phase I

- Traverse path \boldsymbol{i} from left to right iff $\boldsymbol{x}_{\boldsymbol{i}}$ is set to true
- Each path has $3(\boldsymbol{m}+1)$ nodes where \boldsymbol{m} is number of clauses in φ; nodes numbered from left to right (1 to $3 \boldsymbol{m}+3$)

Encoding assignments

φ

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $3 \boldsymbol{j}+1$ and to vertex $3 \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Correctness Proof

Theorem

φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.
Based on proving following two lemmas.

Lemma

If φ has a satisfying assignment then G_{φ} has a Hamilton cycle.

Lemma
 If G_{φ} has a Hamilton cycle then φ has a satisfying assignment.

Satisfying assignment
 Hamiltonian Cycle

Lemma

If φ has a satisfying assignment then G_{φ} has a Hamilton cycle.

Proof.

\Rightarrow Let \boldsymbol{a} be the satisfying assignment for φ. Define Hamiltonian cycle as follows

- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=1$ then traverse path \boldsymbol{i} from left to right
- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=0$ then traverse path \boldsymbol{i} from right to left
- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Reduction: Satisfying assignment Hamiltonian cycle

Satisfying assignment: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$

Reduction: Satisfying assignment Hamiltonian cycle

Satisfying assignment: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$

Reduction: Satisfying assignment Hamiltonian cycle

Satisfying assignment: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$

Reduction: Satisfying assignment Hamiltonian cycle

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Satisfying assignment: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$

Hamiltonian Cycle
 Satisfying assignment

Suppose Π is a Hamiltonian cycle in \boldsymbol{G}_{φ}

Definition

We say Π is canonical if for each clause vertex $\boldsymbol{c}_{\boldsymbol{j}}$ the edge of Π entering c_{j} and edge of Π leaving c_{j} are from the same path corresponding to some variable $\boldsymbol{x}_{\boldsymbol{i}}$. Otherwise Π is non-canonical or emphcheating.

Hamiltonian Cycle
 Satisfying assignment

Suppose Π is a Hamiltonian cycle in \boldsymbol{G}_{φ}

Definition

We say Π is canonical if for each clause vertex \boldsymbol{c}_{j} the edge of Π entering c_{j} and edge of Π leaving c_{j} are from the same path corresponding to some variable $\boldsymbol{x}_{\boldsymbol{i}}$. Otherwise Π is non-canonical or emphcheating.

Lemma

Every Hamilton cycle in \boldsymbol{G}_{φ} is canonical.

Reduction: Hamiltonian cycle satisfying assignment

Reduction: Hamiltonian cycle satisfying assignment

Reduction: Hamiltonian cycle satisfying assignment

Proof of Lemma

Lemma

Every Hamilton cycle in \boldsymbol{G}_{φ} is canonical.

- If Π enters $\boldsymbol{c}_{\boldsymbol{j}}$ (vertex for clause $\boldsymbol{C}_{\boldsymbol{j}}$) from vertex $3 \boldsymbol{j}$ on path \boldsymbol{i} then it must leave the clause vertex on edge to $3 \boldsymbol{j}+1$ on the same path i
- If not, then only unvisited neighbor of $3 \boldsymbol{j}+1$ on path \boldsymbol{i} is $3 \boldsymbol{j}+2$
- Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters $\boldsymbol{c}_{\boldsymbol{j}}$ from vertex $3 \boldsymbol{j}+1$ on path \boldsymbol{i} then it must leave the clause vertex $\boldsymbol{c}_{\boldsymbol{j}}$ on edge to $3 \boldsymbol{j}$ on path \boldsymbol{i}

Hamiltonian Cycle assignment (contd)

Lemma

Any canonical Hamilton cycle in G_{φ} corresponds to a satisfying truth assignment to φ.

Consider a canonical Hamilton cycle Π.

- For every clause vertex $\boldsymbol{c}_{\boldsymbol{j}}$, vertices visited immediately before and after $\boldsymbol{c}_{\boldsymbol{j}}$ are connected by an edge on same path corresponding to some variable $\boldsymbol{x}_{\boldsymbol{i}}$
- We can remove $\boldsymbol{c}_{\boldsymbol{j}}$ from cycle, and get Hamiltonian cycle in $G-c_{j}$
- Hamiltonian cycle from Π in $G-\left\{c_{1}, \ldots c_{m}\right\}$ traverses each path in only one direction, which determines truth assignment
- Easy to verify that this truth assignment satisfies φ

Hamiltonian Cycle in Undirected Graphs

Problem

Input Given undirected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\boldsymbol{i n}}\right)$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\boldsymbol{i n}}\right)$

Hamiltonian cycle reduction

Hamiltonian cycle reduction

Hamiltonian cycle reduction

Hamiltonian cycle reduction

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Hamiltonian Path

Input Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Hamiltonian Path

Input Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Theorem
 Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction from Halitonian Cycle

Hamiltonian Path

Input Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Theorem
 Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction from Halitonian Cycle

Implies that Longest Simple Path in a graph is NP-Complete.

Part II

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $G=(V, E)$: Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph. Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph. Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite!

Graph Coloring

Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.

Graph 2-Coloring can be decided in polynomial time.
G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR \leq_{P} k-Register Allocation, for any $k \geq 3$

Class Room Scheduling

Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Reduce to Graph \boldsymbol{k}-Coloring problem

Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[a, b]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?

Can reduce to \boldsymbol{k}-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

a Yes.
c No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

a Yes.
a No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Non-deterministically guess a 3-coloring for each node
- Check if for each edge $(\boldsymbol{u}, \boldsymbol{v})$, the color of \boldsymbol{u} is different from that of \boldsymbol{v}.
- Hardness: We will show 3-SAT \leq_{P} 3-Coloring.

Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) φ with n variables $x_{1}, \ldots, x_{\boldsymbol{n}}$ and \boldsymbol{m} clauses C_{1}, \ldots, C_{m}. Create graph G_{φ} such that G_{φ} is 3 -colorable iff φ is satisfiable

- need to establish truth assignment for $x_{1}, \ldots, x_{\boldsymbol{n}}$ via colors for some nodes in \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\bar{v}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

Clause Satisfiability Gadget

For each clause $C_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\bar{v}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, add OR-gadget graph with input nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and connect output node of gadget to both False and Base

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False. If any of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction: Figure

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are False. If so, output of OR-gadget for C_{j} has to be colored False but output is connected to Base and False!

Part III

Circuit SAT

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0,1 or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1 ?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1 ?

Claim

CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.
Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT $\leq_{p} 3$ SAT \leq_{p} CSAT.

Theorem
CSAT \leq_{p} SAT $\leq_{p} 3$ SAT.

Converting a CNF formula into a Circuit

Given 3CNF formulat $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit C.

- Inputs to C are the n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Converting a circuit into a CNF formula

(A) Input circuit

(B) Label the nodes.

Converting a circuit into a CNF formula

(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

(C) Introduce var for each node.

$$
\begin{aligned}
& x_{k} \quad(\text { Demand a sat' assignment!) } \\
& x_{k}=x_{i} \wedge x_{j} \\
& x_{j}=x_{g} \wedge x_{h} \\
& x_{i}=\neg x_{f} \\
& x_{h}=x_{d} \vee x_{e} \\
& x_{g}=x_{b} \vee x_{c} \\
& x_{f}=x_{a} \wedge x_{b} \\
& x_{d}=0 \\
& x_{a}=1
\end{aligned}
$$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

CNF

x_{k}	x_{k}
$x_{k}=x_{i} \wedge x_{j}$	$\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$
$x_{j}=x_{g} \wedge x_{h}$	$\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$
$x_{i}=\neg x_{f}$	$\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right)$
$x_{h}=x_{d} \vee x_{e}$	$\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$
$x_{g}=x_{b} \vee x_{c}$	$\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$
$x_{f}=x_{a} \wedge x_{b}$	$\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$
$x_{d}=0$	$\neg x_{d}$
$x_{a}=1$	χ_{a}

Converting a circuit into a CNF formula

CNF

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{P} SAT

(1) For each gate (vertex) v in the circuit, create a variable \boldsymbol{x}_{v}
(2) Case $\neg: ~ v$ is labeled \neg and has one incoming edge from \boldsymbol{u} (so $\left.x_{v}=\neg x_{u}\right)$. In SAT formula generate, add clauses $\left(x_{u} \vee x_{v}\right)$, $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) Case \vee : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right)$, and $\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right)$, $\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{P} SAT

(1) If v is an input gate with a fixed value then we do the following. If $x_{v}=1$ add clause x_{v}. If $x_{v}=0$ add clause $\neg x_{v}$
(2) Add the clause x_{v} where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{C} is satisfiable
\Rightarrow Consider a satisfying assignment a for C
(1) Find values of all gates in \boldsymbol{C} under \boldsymbol{a}
(2) Give value of gate \boldsymbol{v} to variable $\boldsymbol{x}_{\boldsymbol{v}}$; call this assignment \boldsymbol{a}^{\prime}
(3) a^{\prime} satisfies φ_{C} (exercise)
\Leftarrow Consider a satisfying assignment a for φ_{C}
(1) Let \boldsymbol{a}^{\prime} be the restriction of \boldsymbol{a} to only the input variables
(2) Value of gate \boldsymbol{v} under \boldsymbol{a}^{\prime} is the same as value of $\boldsymbol{x}_{\boldsymbol{v}}$ in \boldsymbol{a}
(3) Thus, \boldsymbol{a}^{\prime} satisfies C

List of NP-Complete Problems to Remember

Problems

(1) SAT
(2) 3SAT
(3) CircuitSAT
(4) Independent Set
(5) Clique
(6) Vertex Cover
(1) Hamilton Cycle and Hamilton Path in both directed and undirected graphs
(8) 3Color and Color

