CS/ECE 374: Algorithms & Models of Computation

SAT and NP

Lecture 21 April 22, 2021

Part I

The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- A clause is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

• $(\mathbf{x}_1 \lor \mathbf{x}_2 \lor \neg \mathbf{x}_4) \land (\mathbf{x}_2 \lor \neg \mathbf{x}_3) \land \mathbf{x}_5$ is a CNF formula.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- A clause is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

• $(\mathbf{x}_1 \lor \mathbf{x}_2 \lor \neg \mathbf{x}_4) \land (\mathbf{x}_2 \lor \neg \mathbf{x}_3) \land \mathbf{x}_5$ is a CNF formula.

A formula φ is a 3CNF: A CNF formula such that every clause has exactly 3 literals.
(x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃ ∨ x₁) is a 3CNF formula, but (x₁ ∨ x₂ ∨ ¬x₄) ∧ (x₂ ∨ ¬x₃) ∧ x₅ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ . **Question:** Is there a truth assignment to the variable of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take x_1, x_2, \ldots, x_5 to be all true
- (x₁ ∨ ¬x₂) ∧ (¬x₁ ∨ x₂) ∧ (¬x₁ ∨ ¬x₂) ∧ (x₁ ∨ x₂) is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Importance of SAT and 3SAT

- **SAT** and **3SAT** are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

SAT \leq_P 3SAT

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly** 3 different literals.

SAT \leq_P 3SAT

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly** 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Is Break long clauses into shorter clauses.
- Seperate the above till we have a 3CNF.

Formal proof later.

CS/ECE 374

What about **2SAT**?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Algorithm for 2SAT

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels x = 0 and x = 1). For ever 2CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

Part II

NP

Chandra (UIUC)

CS/ECE 374

10

Spring 2021 10 / 64

P and **NP** and **Turing** Machines

- P: set of decision problems that have polynomial time algorithms.
- In NP: set of decision problems that have polynomial time non-deterministic algorithms.
 - Many natural problems we would like to solve are in NP.
 - Every problem in NP has an exponential time algorithm
 - $P \subseteq NP$
- Some problems in *NP* are in *P* (example, shortest path problem)

Big Question: Does every problem in *NP* have an efficient algorithm? Same as asking whether P = NP.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **O** SAT formula φ : proof is a satisfying assignment.
- **2** Independent Set in graph G and k: a subset S of vertices.
- Homework

Sudoku

			2	5 4				
	3 4	6		4		8		
	4					1	6	
2								
2 7	6						1	9
								3
	1	5					7	
		5 9		8		2	4	
				3	7			

Given $n \times n$ sudoku puzzle, does it have a solution?

Chandra (UIUC)

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes"
- If $s \not\in X$, C(s, t) = "no" for every t.

The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier *C* is an **efficient certifier** for problem *X* if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes" and $|t| \leq p(|s|)$.
- If $s \not\in X$, C(s, t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - Q Certifier: Check |S| ≥ k and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

1 Problem: Does **G** have a vertex cover of size $\leq k$?

- Certificate: $S \subseteq V$.
- **2** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: SAT

1 Problem: Does formula φ have a satisfying truth assignment?

- Certificate: Assignment a of 0/1 values to each variable.
- Ocertifier: Check each clause under *a* and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number *s*. **Question:** Is the number *s* a composite?

O Problem: **Composite**.

- Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.
- Ocertifier: Check that t divides s.

Problem: Prime

Instance: A number *s*. **Question:** Is the number *s* a prime?

Problem: Prime.

- Certificate: ?
- O Certifier: ?

Problem: Prime

Instance: A number *s*. **Question:** Is the number *s* a prime?

Problem: Prime.

- Certificate: ?
- O Certifier: ?

Not obvious!

Problem: Prime

Instance: A number *s*. **Question:** Is the number *s* a prime?

Problem: Prime.

- Certificate: ?
- O Certifier: ?

Not obvious! First shown by Vaughan Pratt in 1975.

Problem: Prime

```
Instance: A number s.
Question: Is the number s a prime?
```

Problem: Prime.

- Certificate: ?
- O Certifier: ?

Not obvious! First shown by Vaughan Pratt in 1975. Primes is in P which gives a different proof and an algorithm! Agarwal-Kayal-Saxena 2002.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and **co-NP** later on if time permits (which it won't).

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Problem: PCP

• Certificate: A sequence of indices i_1, i_2, \ldots, i_k

Q Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

Can one arrange them, using any number of copies of each type, so that the top and bottom strings are equal?

abb	ba	abb	а	abb	b
а	bbb	а	ab	baa	bbb

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

Can one arrange them, using any number of copies of each type, so that the top and bottom strings are equal?

abb	ba	abb	а	abb	b
а	bbb	а	ab	baa	bbb

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Chandra (UIUC)	CS/ECE 374	24	Spring 2021	24 / 64

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, **Vertex Cover**, **Set Cover**, **SAT**, **3SAT**, and **Composite** are all examples of problems in **NP**.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- 1: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate *c*.
- **2** The algorithm now verifies the certificate c for the instance I.
- **NP** can be equivalently described using Turing machines.

P versus NP

Proposition

 $P \subseteq NP$.

P versus NP

Proposition

 $P \subseteq NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- Certifier C on input s, t, runs A(s) and returns the answer.
- **2** C runs in polynomial time.
- 3 If $s \in X$, then for every t, C(s, t) = "yes".
- If $s \notin X$, then for every t, C(s, t) = "no".

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input *s* runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input *s* runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus EXP

Proposition

 $NP \subseteq EXP.$

Proof.

Let $X \in NP$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes".
- In the above algorithm correctly solves X (exercise).
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- **SAT**: try all possible truth assignment to variables.
- **2** Independent Set: try all possible subsets of vertices.
- **Vertex Cover**: try all possible subsets of vertices.

Do NP problems have efficient algorithms?

We know $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$.

Do NP problems have efficient algorithms?

We know $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$.

Big Question Is there are problem in NP that does not belong to P? Is P = NP?

If P = NPOr: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- 2 The RSA cryptosystem can be broken.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...

- Many important optimization problems can be solved efficiently.
- ② The RSA cryptosystem can be broken.
- No security on the web.
- In the second second
- Oreativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If P = NP this implies that...

- **Vertex Cover** can be solved in polynomial time.
- P = EXP.
- EXP \subseteq P.
- All of the above.

P versus NP

Status

Relationship between **P** and **NP** remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Part III

NP-Completeness

35

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- O Hardest problem must be in NP.
- Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- $X \in NP$, and
- **2** (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- Let $\mathbf{Y} \in \mathbf{NP}$. We know $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
- We showed that if Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.
- **③** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.

38

• Since $P \subseteq NP$, we have P = NP.

 $\Leftarrow \text{ Since } \mathbf{P} = \mathbf{NP}, \text{ and } \mathbf{X} \in \mathbf{NP}, \text{ we have a polynomial time algorithm for } \mathbf{X}.$

NP-Hard Problems

Definition

A problem X is said to be NP-Hard if

(Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving **X** implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

41

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- **SAT** is in NP.
- **2** every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

• 3-SAT is in NP

• SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **Independent Set** \leq_P Clique
- **3-SAT** \leq_P **3-Color**
- **3**-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set \leq_P Vertex Cover
- **Independent Set** \leq_P Clique
- **3-SAT** \leq_P **3-Color**
- **3-SAT** \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

Part IV

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k. **Question:** Is there an independent set in G of size k?

3SAT \leq_P Independent Set

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a **3**CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

3SAT \leq_P Independent Set

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

3SAT \leq_P Independent Set

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

Cha

1 G_{φ} will have one vertex for each literal in a clause

Figure: Graph for $\varphi = (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_3) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_4)$

ndra (UIUC)	CS/ECE 374	50	Spring 2021	50 / 64

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for $\varphi = (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_3) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_4)$

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- G_φ will have one vertex for each literal in a clause
 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

Figure: Graph for $\varphi = (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_3) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_4)$

- G_φ will have one vertex for each literal in a clause
 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

Figure: Graph for

 $\varphi = (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_3) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_4)$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let *a* be the truth assignment satisfying φ

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let *a* be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Leftarrow Let **S** be an independent set of size **k**

- **0** S must contain *exactly* one vertex from each clause triangle
- S cannot contain vertices labeled by conflicting literals
- Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part V

SAT reduces to 3-SAT

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly** 3 different literals.

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly** 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Is Break long clauses into shorter clauses.
- ${f 3}$ Repeat the above till we have a ${
 m 3CNF}.$

- 3SAT \leq_P SAT.
- 2 Because...

A **3SAT** instance is also an instance of **SAT**.

Claim

SAT \leq_P 3SAT.

Claim

SAT \leq_P 3SAT.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- φ is satisfiable iff φ' is satisfiable.
- 2 φ' can be constructed from φ in time polynomial in $|\varphi|$.

Claim

SAT \leq_P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ' such that

- **(**) φ is satisfiable iff φ' is satisfiable.
- 2 φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

A clause with two literals

Reduction Ideas: clause with 2 literals

• Case clause with 2 literals: Let $c = \ell_1 \vee \ell_2$. Let u be a new variable. Consider

$$\boldsymbol{c'} = \left(\boldsymbol{\ell}_1 \vee \boldsymbol{\ell}_2 \vee \boldsymbol{u}\right) \wedge \left(\boldsymbol{\ell}_1 \vee \boldsymbol{\ell}_2 \vee \neg \boldsymbol{u}\right).$$

2 Suppose $\varphi = \psi \wedge c$. Then $\varphi' = \psi \wedge c'$ is satisfiable iff φ is satisfiable.

SAT \leq_P **3SAT** A clause with a single literal

Reduction Ideas: clause with 1 literal

• Case clause with one literal: Let c be a clause with a single literal (i.e., $c = \ell$). Let u, v be new variables. Consider

$$c' = (\ell \lor u \lor v) \land (\ell \lor u \lor \neg v) \land (\ell \lor \neg u \lor \neg v) \land (\ell \lor \neg u \lor \neg v) \land (\ell \lor \neg u \lor \neg v)$$

2 Suppose $\varphi = \psi \wedge c$. Then $\varphi' = \psi \wedge c'$ is satisfiable iff φ is satisfiable.

Chandra (UIUC)

SAT \leq_P **3SAT** A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals

• Case clause with five literals: Let $c = \ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4 \lor \ell_5$. Let u be a new variable. Consider

$$\boldsymbol{c}' = \left(\boldsymbol{\ell}_1 \vee \boldsymbol{\ell}_2 \vee \boldsymbol{\ell}_3 \vee \boldsymbol{u}\right) \wedge \left(\boldsymbol{\ell}_4 \vee \boldsymbol{\ell}_5 \vee \neg \boldsymbol{u}\right).$$

2 Suppose $\varphi = \psi \wedge c$. Then $\varphi' = \psi \wedge c'$ is satisfiable iff φ is satisfiable.

SAT \leq_P **3SAT** A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals

• Case clause with k > 3 literals: Let $c = \ell_1 \lor \ell_2 \lor \ldots \lor \ell_k$. Let u be a new variable. Consider

$$\boldsymbol{c}' = \left(\boldsymbol{\ell}_1 \vee \boldsymbol{\ell}_2 \dots \boldsymbol{\ell}_{k-2} \vee \boldsymbol{u}\right) \wedge \left(\boldsymbol{\ell}_{k-1} \vee \boldsymbol{\ell}_k \vee \neg \boldsymbol{u}\right).$$

2 Suppose $\varphi = \psi \wedge c$. Then $\varphi' = \psi \wedge c'$ is satisfiable iff φ is satisfiable.

Breaking a clause

Lemma

For any boolean formulas X and Y and z a new boolean variable. Then

 $X \lor Y$ is satisfiable

if and only if, z can be assigned a value such that

$$ig(oldsymbol{X} ee oldsymbol{z} ig) \wedge ig(oldsymbol{Y} ee
eg oldsymbol{
abla} ig)$$
 is satisfiable

(with the same assignment to the variables appearing in X and Y).

61

SAT \leq_P **3SAT** (contd)

Clauses with more than 3 literals

Let $c = \ell_1 \lor \cdots \lor \ell_k$. Let $u_1, \ldots u_{k-3}$ be new variables. Consider

$$c' = \left(\ell_1 \lor \ell_2 \lor u_1\right) \land \left(\ell_3 \lor \neg u_1 \lor u_2\right)$$
$$\land \left(\ell_4 \lor \neg u_2 \lor u_3\right) \land$$
$$\cdots \land \left(\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}\right) \land \left(\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}\right).$$

Claim

 $arphi = \psi \wedge c$ is satisfiable iff $arphi' = \psi \wedge c'$ is satisfiable.

Another way to see it — reduce size of clause by one:

$$\boldsymbol{c'} = \left(\boldsymbol{\ell}_1 \vee \boldsymbol{\ell}_2 \ldots \vee \boldsymbol{\ell}_{k-2} \vee \boldsymbol{u}_{k-3}\right) \wedge \left(\boldsymbol{\ell}_{k-1} \vee \boldsymbol{\ell}_k \vee \neg \boldsymbol{u}_{k-3}\right).$$

Example

$$arphi = igg(
eg x_1 ee
eg x_4 igg) \wedge igg(x_1 ee
eg x_2 ee
eg x_3 igg) \ \wedge igg(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igg) \wedge igg(x_1 igg).$$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

Example

$$arphi = igg(
eg x_1 ee
eg x_4 igg) \wedge igg(x_1 ee
eg x_2 ee
eg x_3 igg) \ \wedge igg(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igg) \wedge igg(x_1 igg).$$

Equivalent form:

$$\psi = (
eg x_1 ee
eg x_4 ee z) \land (
eg x_1 ee
eg x_4 ee
eg z) \ \land (x_1 ee
eg x_4 ee
eg z) \ \land (x_1 ee
eg x_2 ee
eg x_3)$$

Chandra (UIUC)

CS/ECE 374

Example

$$arphi = igg(
eg x_1 ee
eg x_4 igg) \wedge igg(x_1 ee
eg x_2 ee
eg x_3 igg) \ \wedge igg(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igg) \wedge igg(x_1 igg).$$

Equivalent form:

$$egin{aligned} \psi &= (
eg x_1 ee
eg x_4 ee z) \ \land \ (
eg x_1 ee
eg x_4 ee
eg z) \ \land \ (x_1 ee
eg x_2 ee
eg x_3) \ \land \ (
eg x_2 ee
eg x_3 ee y_1) \ \land \ (x_4 ee x_1 ee
eg y_1) \end{aligned}$$

Chandra (UIUC)

Example

$$arphi = igg(
eg x_1 ee
eg x_4 igg) \wedge igg(x_1 ee
eg x_2 ee
eg x_3 igg) \ \wedge igg(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igg) \wedge igg(x_1 igg).$$

Equivalent form:

$$egin{aligned} \psi &= (
egin{aligned} & (
egin{aligned} & x_1 \lor
egin{aligned} & y_1 \cr & (x_1 \lor u \lor
egin{aligned} & y_1 \cr & (x_1 \lor u \lor
egin{aligned} & y_1 \cr & (x_1 \lor u \lor
egin{aligned} & y_1 \cr & (x_1 \lor u \lor
egin{aligned} & y_1 \cr & (x_1 \lor
egin{aligned} & y_1 \cr & (x$$

63

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):

// \varphi: CNF formula.

for each clause c of \varphi do

if c does not have exactly 3 literals then

construct c' as before

else

c' = c

\psi is conjunction of all c' constructed in loop

return Solver3SAT(\psi)
```

Correctness (informal)

 φ is satisfiable iff ψ is satisfiable because for each clause c, the new 3CNF formula c' is logically equivalent to c.