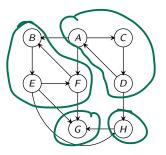
CS/ECE 374: Algorithms & Models of Computation

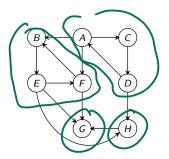
Directed Graphs and DFS

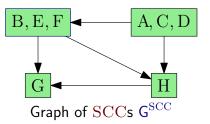
Lecture 16 March 23, 2021

Topics


- Structure of directed graphs
 - Directed acyclic graphs (DAGs) and topological sort
 - Strong connected components and meta graph representation
- DFS and its properties includig pre/post numbering
- Linear time algorithm for compuing all SCCs of a directed graph

Strong Connected Components (SCCs)


Algorithmic Problem


Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: sketch of a O(n + m) time algorithm.

Graph of SCCs

Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \ldots S_k$
- ② There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.

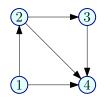
SCCs and DAGs

Proposition

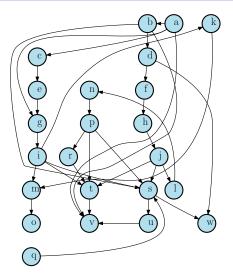
For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

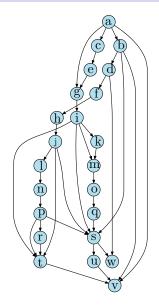
If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.


Part I

Directed Acyclic Graphs


Directed Acyclic Graphs

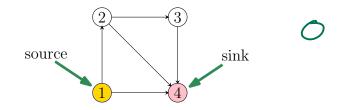
Definition


A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.

DAGs can be complicated

DAGs can be complicated

Chandra (UIUC)


DAGs can be dense

A DAG on **n** vertices can have $\Omega(\mathbf{n}^2)$ edges. Which ones?

Sources and Sinks

Definition A vertex u is a source if it has no in-coming edges. A vertex u is a sink if it has no out-going edges.

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

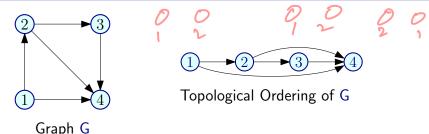
Let $P = v_1, v_2, \ldots, v_k$ be a *longest* (or a *maximal*) path in G. Claim that v_1 is a source and v_k is a sink. Suppose v_1 is not a source. Then v_1 has an incoming edge which either creates a cycle, or creates a longer path, both of which are contradictions. Similarly if v_k is not a sink, then it has an outgoing edge and creates a cycle, or a longer path.

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.


Let $P = v_1, v_2, \ldots, v_k$ be a *longest* (or a *maximal*) path in G. Claim that v_1 is a source and v_k is a sink. Suppose v_1 is not a source. Then v_1 has an incoming edge which either creates a cycle, or creates a longer path, both of which are contradictions. Similarly if v_k is not a sink, then it has an outgoing edge and creates a cycle, or a longer path.

- G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Chandra (UIUC)

Topological Ordering/Sorting

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

Chandra (UIUC)

CS/ECE 374

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if and only if it is a DAG.

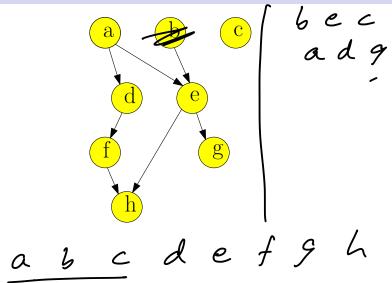
Need to show both directions.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.


Consider the following algorithm:

- Pick a source *u*, output it.
- **2** Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered **only if** it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec . G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$! That is... $u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of G can be computed in O(m + n) time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Part II

Depth First Search (DFS)

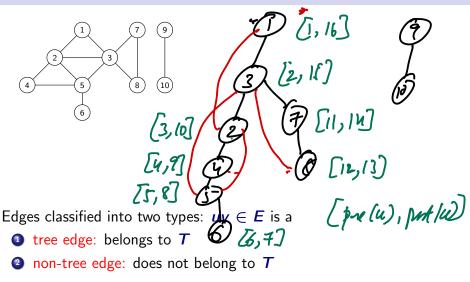
Depth First Search

DFS is a special case of Basic Search but is a versatile graph exploration strategy. John Hopcroft and Bob Tarjan (Turing Award winners) demonstrated the power of **DFS** to understand graph structure. **DFS** can be used to obtain linear time (O(m + n)) algorithms for

- Finding cut-edges and cut-vertices of undirected graphs
- Inding strong connected components of directed graphs
- Linear time algorithm for testing whether a graph is planar
 Many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.


```
\begin{aligned} \mathsf{DFS}(G) \\ & \text{for all } u \in V(G) \text{ do} \\ & \text{Mark } u \text{ as unvisited} \\ & \text{Set pred}(u) \text{ to null} \\ & T \text{ is set to } \emptyset \\ & \text{while } \exists \text{ unvisited } u \text{ do} \\ & \text{DFS}(u) \\ & \text{Output } T \end{aligned}
```

```
DFS(u)
Mark u as visited
for each uv in Out(u) do
    if v is not visited then
        add edge uv to T
        set pred(v) to u
        DFS(v)
```

Implemented using a global array *Visited* for all recursive calls. T is the search tree/forest.

Non-recursive version: based on stacks

Example

Properties of **DFS** tree

Proposition

T is a forest

 \bigcirc connected components of T are same as those of G.

If $uv \in E$ is a non-tree edge then, in T, either:

1 *u* is an ancestor of **v**, or

2 v is an ancestor of **u**.

Question: Why are there no *cross-edges*?

DFS with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
for all u \in V(G) do

Mark u as unvisited

T is set to \emptyset

time = 0

while \existsunvisited u do

DFS(u)

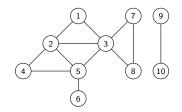
Output T
```

```
DFS(u)
```

```
Mark u as visited

pre(u) = ++time

for each uv in Out(u) do


if v is not marked then

add edge uv to T

DFS(v)

post(u) = ++time
```

Example

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then v visited after u.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\operatorname{pre}(v) > \operatorname{post}(u)$.

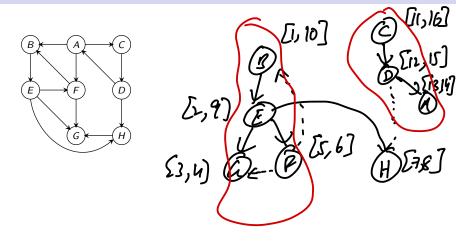
Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\operatorname{pre}(v) > \operatorname{post}(u)$.


pre and post numbers useful in several applications of DFS

DFS in Directed Graphs

```
DFS(G)
Mark all nodes u as unvisited
T is set to \emptyset
time = 0
while there is an unvisited node u do
DFS(u)
Output T
```

```
DFS(u)
Mark u as visited
pre(u) = ++time
for each edge (u, v) in Out(u) do
    if v is not visited
        add edge (u, v) to T
        DFS(v)
post(u) = ++time
```

Example

Generalizing ideas from undirected graphs: **DFS**(G) takes O(m + n) time.

Generalizing ideas from undirected graphs:

- **OFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.

Generalizing ideas from undirected graphs:

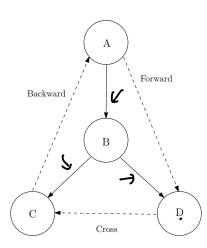
- **OFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

Generalizing ideas from undirected graphs:

- **OFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **OFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.


Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

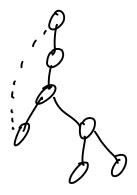
DFS Tree

Edges of G can be classified with respect to the **DFS** tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).</p>
- A backward edge is a non-tree edge (y, x) such that pre(x) < pre(y) < post(y) < post(x).</p>
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Types of Edges

The edp


Chandra (UIUC)

CS/ECE 374

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?

Using **DFS**...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

Using **DFS**...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cyclce C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Using **DFS**...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

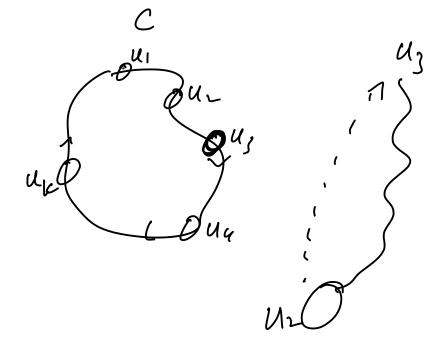
- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cyclce C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition


G has a cycle iff there is a back-edge in DFS(G).

Proof.

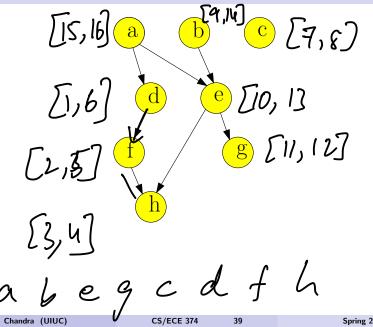
If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_j$ Let v_i be first node in C visited in **DFS**. All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Proof

Proposition


If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [*pre*(*u*), *post*(*u*)] is disjoint from [*pre*(*v*), *post*(*v*)]. This cannot happen since *v* would be explored from *u*.

Example

Part III

Linear time algorithm for finding all strong connected components of a directed graph

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

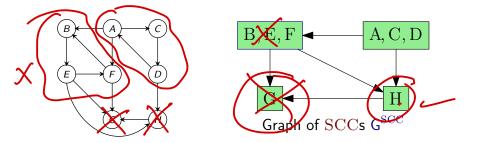
Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev} , u) using $DFS(G^{rev}, u)$ SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev} , u) $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n + m))

Finding all SCCs of a Directed Graph

Problem


Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev} , u) using DFS(G^{rev} , u) SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev} , u) $\forall u \in$ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Structure of a Directed Graph

Reminder

 $\mathsf{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Chandra (UIUC)

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- **2** Do **DFS**(u) to compute **SCC**(u)
- Remove SCC(u) and repeat

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- **2** Do **DFS**(u) to compute **SCC**(u)
- **3** Remove SCC(u) and repeat

Justification

OFS(u) only visits vertices (and edges) in SCC(u)

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- **2** Do **DFS**(u) to compute **SCC**(u)
- **3** Remove SCC(u) and repeat

Justification

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- **2** Do **DFS**(u) to compute **SCC**(u)
- **3** Remove SCC(u) and repeat

Justification

- **DFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- **2** Do **DFS**(u) to compute **SCC**(u)
- Remove SCC(u) and repeat

Justification

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

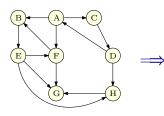
Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

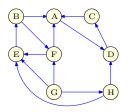
Can we obtain an implicit topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

Answer: DFS(G) gives some information!

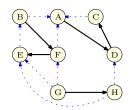
Linear Time Algorithm

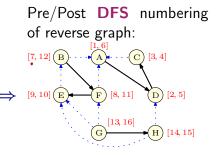

... for computing the strong connected components in G

Theorem


Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

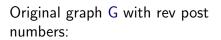
Linear Time Algorithm: Initial steps

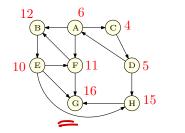

Graph G:

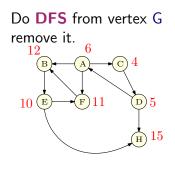


Reverse graph G^{rev} :

DFS of reverse graph:




Chandra (UIUC)


CS/ECE 374

Linear Time Algorithm: An Example

Removing connected components: 1

SCC computed: {G}

Á, H, B, to E, F, A, D, C

Linear Time Algorithm: An Example

Removing connected components: 2

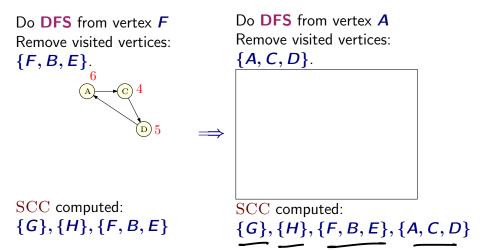
Do **DFS** from vertex G remove it. 12 6 B A C 410 E F 11 D 5H 15 Do **DFS** from vertex H, remove it. $12 \qquad 6$ $B \qquad A \qquad C \qquad 4$ $10 \qquad E \qquad F \qquad 11 \qquad D \qquad 5$

SCC computed: $\{G\}$

SCC computed: {*G*}, {*H*}

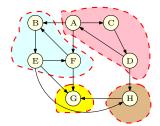
Linear Time Algorithm: An Example

Removing connected components: 3

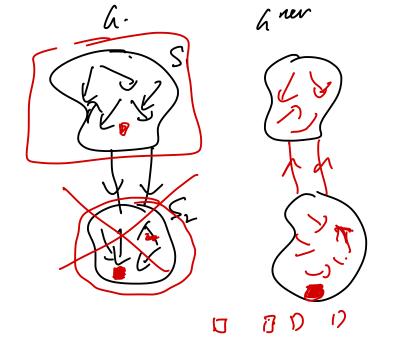

Do **DFS** from vertex H, remove it. $12 \qquad 6 \qquad 6 \qquad 10 \qquad \text{E} \qquad \text{F} 11 \qquad \text{D} 5$ Do **DFS** from vertex **B** Remove visited vertices: $\{F, B, E\}$.

SCC computed: {*G*}, {*H*}

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$


Linear Time Algorithm: An Example

Removing connected components: 4



Linear Time Algorithm: An Example

Final result

SCC computed: $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$ Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

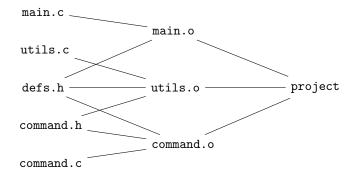
- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC} ?

Part IV

An Application to make

Make/Makefile

- I know what make/makefile is.
- I do NOT know what make/makefile is.


make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - 2 Source/object files to be used in creation, and
 - O How to create them

An Example makefile

main.o: main.c defs.h
 cc -c main.c
utils.o: utils.c defs.h command.h
 cc -c utils.c
command.o: command.c defs.h command.h
 cc -c command.c

makefile as a Digraph

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- OAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).