Non deterministic Finite Automata (NFA)

Recall that for DFAs:

- for each state, exactly one outgoing edge for each \(a \in \Sigma \)
- formalized by type sig \(\delta : Q \times \Sigma \rightarrow Q \)
- extended transition fn \(\delta^* : Q \times \Sigma^* \rightarrow Q \)
- \(\delta^*(s, w) \) is exactly one state
 check if \(\delta^*(s, w) \in A \).

In NFA:

- relax condition on transitions.
- allow any number of transitions per \(a \in \Sigma \).
- also allow special \(\epsilon \)-transitions
 that can be taken for free without reading input.

Ex.

![Diagram of an NFA]

Type sig of NFA transition:

\[\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q) \]

\[\delta(s, 0) = \{s, a\} \]
\[\delta(s, 1) = \emptyset \]
Interpret as "always fail" or "gracefully crash"

Try: run NFA
Catch: reject.
tape sig of extended transition is $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

$\delta^*(s, 01) = \{ b \}$

$\delta^*(s, w)$ might contain states in A
might contain states not in A
might be empty

What does it mean for an NFA to accept a string?

Define an NFA accepting w to mean
at least one state in $\delta^*(s, w)$ is in A
i.e. $\delta^*(s, w) \cap A \neq \emptyset$

Language of NFA N: $L(N) = \{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}$

Several Interpretations

- Magic fairy that tells you which transition to take
 at each step to get to an accepting state
 (if possible)

- Verification: user claiming $w \in L(N)$ has to provide
 proof in the form of seq of transitions

- Many threads in parallel accept if at least one thread
 accepts "Many worlds"

Remarks:

- Every DFA can be interpreted as an NFA.

 DFA $M = (Q, \Sigma, \delta, s, A)$

 build $N = (Q, \Sigma, \delta', s, A)$

 $\delta'(q, a) = \{ \delta(q, a) \}$

- Purely graphically "see" every DFA is an NFA

Next Tuesday: NFA can be converted to a DFA
Ex. Given $w = a_1a_2a_3 \ldots a_n$ NFA for $\exists w \in \emptyset$

Ex. $w = \emptyset$ means read null NFA's for $\exists w \in \emptyset$

Ex. NFA for \emptyset

Ex. Often (?) NFA's are smaller than DFA's for the same language.

$L = \{ w | \text{second to last symbol in } w \text{ is } 0 \}$

DFA:

4 states turns out to be optimal, cannot get smaller DFA (why? later)
State label is last two symbols seen (1 means not 0)

NFA:

3 states

Closure properties of NFAs

For convenience, assume that the NFAs given to us have exactly one accepting state.

Normalize if necessary.

Union

$L(N_1) \cup L(N_2)$

Concatenation

$L(N_1) \cdot L(N_2)$
- Concatenation \(L(N_1) \cdot L(N_2) \)

- Kleene Star \(L(N)^* \)

Problem: NFA for \(\Sigma^* \)

\[
\begin{array}{c}
\xrightarrow{0} 0 \\
\xrightarrow{1} 1
\end{array}
\]

\(\epsilon \in \Sigma^* \)

\(\epsilon \notin L(\cup_{i=3} L(N_i)) \)

NFA for \(\emptyset \)

NFA for \(\emptyset \)

New start state
Next, construct a DFA from the NFA (powerset). Then, using Thompson's algorithm, construct an NFA for the same language given any regex. The resulting NFA can be converted to a regex.