
CS/ECE 374 Lab 8½ Spring 2021

1. Given a graph G = (V, E), a vertex cover of G is a subset S ⊆ V of vertices such that for each
edge e = (u, v) in G, u or v is in S. That is, the vertices in S cover all the edges. Given a tree
T = (V, E) and a non-negative weight w(v) for each vertex v ∈ V , give an algorithm that computes
the minimum weight vertex cover of T ; the weight of a cover S is the sum of the weights of the
vertices in S. In the tree below, {B, E, G} is a vertex cover while {C , E, F} is not a vertex cover. It is
helpful to root the tree.

196 Algorithms

with which keywords are accessed, we can use an even more fine-tuned cost function, the average
number of comparisons to look up a word. For the search tree on the left, it is

cost = 1(0.04) + 2(0.40 + 0.10) + 3(0.05 + 0.08 + 0.10 + 0.23) = 2.42.

By this measure, the best search tree is the one on the right, which has a cost of 2.18.
Give an efficient algorithm for the following task.

Input: n words (in sorted order); frequencies of these words: p1, p2, . . . , pn.
Output: The binary search tree of lowest cost (defined above as the expected number
of comparisons in looking up a word).

6.21. A vertex cover of a graph G = (V, E) is a subset of vertices S ⊆ V that includes at least one
endpoint of every edge in E. Give a linear-time algorithm for the following task.

Input: An undirected tree T = (V, E).
Output: The size of the smallest vertex cover of T .

For instance, in the following tree, possible vertex covers include {A, B, C, D, E, F, G} and {A, C, D, F}
but not {C, E, F}. The smallest vertex cover has size 3: {B, E, G}.

E

DA

B

C F

G

6.22. Give an O(nt) algorithm for the following task.

Input: A list of n positive integers a1, a2, . . . , an; a positive integer t.
Question: Does some subset of the ai’s add up to t? (You can use each ai at most once.)

(Hint: Look at subproblems of the form “does a subset of {a1, a2, . . . , ai} add up to s?” )
6.23. A mission-critical production system has n stages that have to be performed sequentially; stage

i is performed by machine Mi. Each machine Mi has a probability ri of functioning reliably and
a probability 1 − ri of failing (and the failures are independent). Therefore, if we implement
each stage with a single machine, the probability that the whole system works is r1 · r2 · · · rn.
To improve this probability we add redundancy, by having mi copies of the machine Mi that
performs stage i. The probability that all mi copies fail simultaneously is only (1 − ri)mi , so the
probability that stage i is completed correctly is 1− (1− ri)mi and the probability that the whole
system works is ∏n

i=1(1 − (1 − ri)mi). Each machineMi has a cost ci, and there is a total budget
B to buy machines. (Assume that B and ci are positive integers.)
Given the probabilities r1, . . . , rn, the costs c1, . . . , cn, and the budget B, find the redundancies
m1, . . . , mn that are within the available budget and that maximize the probability that the
system works correctly.

6.24. Time and space complexity of dynamic programming. Our dynamic programming algorithm for
computing the edit distance between strings of length m and n creates a table of size n × m and
therefore needs O(mn) time and space. In practice, it will run out of space long before it runs out
of time. How can this space requirement be reduced?

2. A basic arithmetic expression is composed of characters from the set {1,+,×} and parentheses.
Almost every integer can be represented by more than one basic arithmetic expression. For example,
all of the following basic arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))

(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)

(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum number
of 1’s in a basic arithmetic expression whose value is equal to n. The number of parentheses doesn’t
matter, just the number of 1’s. For example, when n = 14, your algorithm should return 8, for
the final expression above. The running time of your algorithm should be bounded by a small
polynomial function of n.

3. To think about later: Suppose you are given a sequence of integers separated by + and − signs;
for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and − signs,
the maximum possible value the expression can take by adding parentheses. Parentheses must be
used only to group additions and subtractions; in particular, do not use them to create implicit
multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

1


