1. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ of vertices such that for each edge $e=(u, v)$ in G, u or v is in S. That is, the vertices in S cover all the edges. Given a tree $T=(V, E)$ and a non-negative weight $w(v)$ for each vertex $v \in V$, give an algorithm that computes the minimum weight vertex cover of T; the weight of a cover S is the sum of the weights of the vertices in S. In the tree below, $\{B, E, G\}$ is a vertex cover while $\{C, E, F\}$ is not a vertex cover. It is helpful to root the tree.

2. A basic arithmetic expression is composed of characters from the set $\{1,+, \times\}$ and parentheses. Almost every integer can be represented by more than one basic arithmetic expression. For example, all of the following basic arithmetic expression represent the integer 14:

$$
\begin{gathered}
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 \\
((1+1) \times(1+1+1+1+1))+((1+1) \times(1+1)) \\
(1+1) \times(1+1+1+1+1+1+1) \\
(1+1) \times(((1+1+1) \times(1+1))+1)
\end{gathered}
$$

Describe and analyze an algorithm to compute, given an integer n as input, the minimum number of 1's in a basic arithmetic expression whose value is equal to n. The number of parentheses doesn't matter, just the number of 1's. For example, when $n=14$, your algorithm should return 8 , for the final expression above. The running time of your algorithm should be bounded by a small polynomial function of n.
3. To think about later: Suppose you are given a sequence of integers separated by + and - signs; for example:

$$
1+3-2-5+1-6+7
$$

You can change the value of this expression by adding parentheses in different places. For example:

$$
\begin{gathered}
1+3-2-5+1-6+7=-1 \\
(1+3-(2-5))+(1-6)+7=9 \\
(1+(3-2))-(5+1)-(6+7)=-17
\end{gathered}
$$

Describe and analyze an algorithm to compute, given a list of integers separated by + and - signs, the maximum possible value the expression can take by adding parentheses. Parentheses must be used only to group additions and subtractions; in particular, do not use them to create implicit multiplication as in $1+3(-2)(-5)+1-6+7=33$.

