In lecture, we described an algorithm of Karatsuba that multiplies two n-digit integers using $O(n^{\lg 3})$ single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number, where $m < n$, in $O(m^{\lg 3-1}n)$ time.

Solution: Split the larger number into $\lceil n/m \rceil$ chunks, each with m digits. Multiply the smaller number by each chunk in $O(m^{\lg 3})$ time using Karatsuba’s algorithm, and then add the resulting partial products with appropriate shifts.

```
SKEMULTIPLY(x[0..m-1], y[0..n-1]):
    prod ← 0
    offset ← 0
    for i ← 0 to n/m - 1
    chunk ← y[i·m..(i+1)·m-1]
    prod ← prod + MULTIPLY(x, chunk) · 10^i·m
    return prod
```

Each call to MULTIPLY requires $O(m^{\lg 3})$ time, and all other work within a single iteration of the main loop requires $O(m)$ time. Thus, the overall running time of the algorithm is $O(1)+n/mO(m^{\lg 3}) = O(m^{\lg 3-1}n)$ as required.

This is the standard method for multiplying a large integer by a single “digit” integer **written in base 10**, but with each single-“digit” multiplication implemented using Karatsuba’s algorithm. ■
2. Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

Solution: We compute 2^n via repeated squaring, implementing the following recurrence:

$$2^n = \begin{cases}
1 & \text{if } n = 0 \\
(2^{n/2})^2 & \text{if } n > 0 \text{ is even} \\
2 \cdot (2^{\lfloor n/2 \rfloor})^2 & \text{if } n \text{ is odd}
\end{cases}$$

We use Karatsuba's algorithm to implement decimal multiplication for each square.

```
function TWO_TO_THE(n):
    if n = 0
        return 1
    m ← \lfloor n/2 \rfloor
    z ← TWO_TO_THE(m) \quad \langle recurse! \rangle
    z ← MULTIPLY(z, z) \quad \langle Karatsuba \rangle
    if n is odd
        z ← ADD(z, z)
    return z
```

The running time of this algorithm satisfies the recurrence $T(n) = T(\lfloor n/2 \rfloor) + O(n^{\lg 3})$. We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth i is $O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i)$. Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0, so the total running time is at most $O(n^{\lg 3})$. ■
3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(n^{\lg 3}) \) time. [Hint: Let \(x = a \cdot 2^{n/2} + b \). Watch out for an extra \(\log \) factor in the running time.]

Solution: Following the hint, we break the input \(x \) into two smaller numbers \(x = a \cdot 2^{n/2} + b \); recursively convert \(a \) and \(b \) into decimal; convert \(2^{n/2} \) into decimal using the solution to problem 2; multiply \(a \) and \(2^{n/2} \) using Karatsuba’s algorithm; and finally add the result to \(b \) to get the final result.

```plaintext
DECIMAL([0..n-1]):
  if n < 100
    use brute force
  m ← [n/2]
  a ← x[m..n-1]
  b ← x[0..m-1]
  return ADD(MULTIPLY(DECIMAL(a), TWO_TO_THE(m)), DECIMAL(b))
```

The running time of this algorithm satisfies the recurrence \(T(n) = 2T(n/2) + O(n^{\lg 3}) \); the \(O(n^{\lg 3}) \) term includes the running times of both MULTIPLY and TWO_TO_THE (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with \(2^i \) nodes at recursion depth \(i \). Each recursive call at depth \(i \) converts an \(n/2^i \)-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is \(O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i) \). Thus, the total work at depth \(i \) is \(2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i) \). The level sums define a descending geometric series, which is dominated by its largest term \(O(n^{\lg 3}) \).

Notice that if we had converted \(2^{n/2} \) to decimal **recursively** instead of calling TWO_TO_THE, the recurrence would have been \(T(n) = 3T(n/2) + O(n^{\lg 3}) \). Every level of this recursion tree has the same sum, so the overall running time would be \(O(n^{\lg 3} \log n) \).
Think about later:

*4. Suppose we can multiply two n-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n) \log n)$ time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba’s algorithm. Let $T_2(n)$ and $T_3(n)$ denote the running times of **TWO**TO**THE** and **DECIMAL**, respectively. We need to solve the recurrences

$$T_2(n) = T_2(n/2) + O(M(n)) \quad \text{and} \quad T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).$$

But how can we do that when we don’t know $M(n)$?

For the moment, suppose $M(n) = O(n^c)$ for some constant $c > 0$. Since any algorithm to multiply two n-digit numbers must read all n digits, we have $M(n) = \Omega(n)$, and therefore $c \geq 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \leq 2$. With this assumption, the recursion tree method implies

$$T_2(n) = T_2(n/2) + O(n^c) \quad \Rightarrow \quad T_2(n) = O(n^c)$$

$$T_3(n) = 2T_3(n/2) + O(n^c) \quad \Rightarrow \quad T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, $M(n)$ may not be a simple polynomial, but we can effectively ignore any subpolynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

$$\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \leq \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n/2)} = \tilde{T}_2(n/2) + O(n^c).$$

Here we used the inequality $\mu(n) \geq \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \leq O(n^c)$, and therefore $T_2(n) \leq O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \leq 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

$$\tilde{T}_3(n) \leq \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.

1A recent multiplication algorithm based on fast Fourier transforms runs in $O(n \log n 2^{O(\log^c n)})$ time, so we can safely assume that $c = 1$. But our solution doesn’t use that fact.