In lecture, we described an algorithm of Karatsuba that multiplies two n-digit integers using $O\left(n^{\lg 3}\right)$ single-digit additions, subtractions, and multiplications. In this lab we'll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number, where $m<n$, in $O\left(m^{\lg 3-1} n\right)$ time.

Solution: Split the larger number into $\lceil n / m\rceil$ chunks, each with m digits. Multiply the smaller number by each chunk in $O\left(m^{\lg 3}\right)$ time using Karatsuba's algorithm, and then add the resulting partial products with appropriate shifts.

```
SKEWMULTIPLY \((x[0 . . m-1], y[0 . . n-1]):\)
    prod \(\leftarrow 0\)
    offset \(\leftarrow 0\)
    for \(i \leftarrow 0\) to \(\lceil n / m\rceil-1\)
        chunk \(\leftarrow y[i \cdot m . .(i+1) \cdot m-1]\)
        \(\operatorname{prod} \leftarrow \operatorname{prod}+\operatorname{Multiply}(x\), chunk \() \cdot 10^{i \cdot m}\)
    return prod
```

Each call to MULTIPLY requires $O\left(m^{\lg 3}\right)$ time, and all other work within a single iteration of the main loop requires $O(m)$ time. Thus, the overall running time of the algorithm is $O(1)+\lceil n / m\rceil O\left(m^{\lg 3}\right)=$ $O\left(m^{\lg 3-1} n\right)$ as required.

This is the standard method for multiplying a large integer by a single "digit" integer written in base 10^{m}, but with each single-"digit" multiplication implemented using Karatsuba's algorithm.
2. Describe an algorithm to compute the decimal representation of 2^{n} in $O\left(n^{\lg 3}\right)$ time. (The standard algorithm that computes one digit at a time requires $\Theta\left(n^{2}\right)$ time.)

Solution: We compute 2^{n} via repeated squaring, implementing the following recurrence:

$$
2^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(2^{n / 2}\right)^{2} & \text { if } n>0 \text { is even } \\ 2 \cdot\left(2^{\lfloor n / 2\rfloor}\right)^{2} & \text { if } n \text { is odd }\end{cases}
$$

We use Karatsuba's algorithm to implement decimal multiplication for each square.

TwoToThe (n) :	
if $n=0$	
return 1	
$m \leftarrow\lfloor n / 2\rfloor$	
$z \leftarrow$ TwoToThe (m)	<<recurse! ${ }^{\text {d }}$,
$z \leftarrow \operatorname{MUlTiply}(z, z)$	<<Karatsuba〉>
if n is odd	
$z \leftarrow \operatorname{ADD}(z, z)$	
return z	

The running time of this algorithm satisfies the recurrence $T(n)=T(\lfloor n / 2\rfloor)+O\left(n^{\lg 3}\right)$. We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth i is $O\left(\left(n / 2^{i}\right)^{\lg 3}\right)=O\left(n^{\lg 3} / 3^{i}\right)$. Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0 , so the total running time is at most $O\left(n^{\lg 3}\right)$.
3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O\left(n^{\lg 3}\right)$ time. [Hint: Let $x=a \cdot 2^{n / 2}+b$. Watch out for an extra log factor in the running time.]

Solution: Following the hint, we break the input x into two smaller numbers $x=a \cdot 2^{n / 2}+b$; recursively convert a and b into decimal; convert $2^{n / 2}$ into decimal using the solution to problem 2; multiply a and $2^{n / 2}$ using Karatsuba's algorithm; and finally add the product to b to get the final result.

```
\(\operatorname{DECIMAL}(x[0 . . n-1]):\)
    if \(n<100\)
        use brute force
    \(m \leftarrow\lceil n / 2\rceil\)
    \(a \leftarrow x[m . . n-1]\)
    \(b \leftarrow x[0 . . m-1]\)
    return \(\operatorname{Add}(\operatorname{Multiply}(\operatorname{Decimal}(a), \operatorname{TwoToThe}(m)), \operatorname{Decimal}(b))\)
```

The running time of this algorithm satisfies the recurrence $T(n)=2 T(n / 2)+O\left(n^{\lg 3}\right)$; the $O\left(n^{1 g 3}\right)$ term includes the running times of both Multiply and TwoToThe (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2^{i} nodes at recursion depth i. Each recursive call at depth i converts an $n / 2^{i}$-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is $O\left(\left(n / 2^{i}\right)^{\lg 3}\right)=O\left(n^{\lg 3} / 3^{i}\right)$. Thus, the total work at depth i is $2^{i} \cdot O\left(n^{\lg 3} / 3^{i}\right)=O\left(n^{\lg 3} /(3 / 2)^{i}\right)$. The level sums define a descending geometric series, which is dominated by its largest term $O\left(n^{\lg 3}\right)$.

Notice that if we had converted $2^{n / 2}$ to decimal recursively instead of calling TwoToThe, the recurrence would have been $T(n)=3 T(n / 2)+O\left(n^{\lg 3}\right)$. Every level of this recursion tree has the same sum, so the overall running time would be $O\left(n^{\lg 3} \log n\right)$.

Think about later:

*4. Suppose we can multiply two n-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n) \log n)$ time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba's algorithm. Let $T_{2}(n)$ and $T_{3}(n)$ denote the running times of TwoToThe and DECIMAL, respectively. We need to solve the recurrences

$$
T_{2}(n)=T_{2}(n / 2)+O(M(n)) \quad \text { and } \quad T_{3}(n)=2 T_{3}(n / 2)+T_{2}(n)+O(M(n)) .
$$

But how can we do that when we don't know $M(n)$?
For the moment, suppose $M(n)=O\left(n^{c}\right)$ for some constant $c>0$. Since any algorithm to multiply two n-digit numbers must read all n digits, we have $M(n)=\Omega(n)$, and therefore $c \geq 1$. On the other hand, the grade-school lattice algorithm implies $M(n)=O\left(n^{2}\right)$, so we can safely assume $c \leq 2$. With this assumption, the recursion tree method implies

$$
\begin{array}{ll}
T_{2}(n)=T_{2}(n / 2)+O\left(n^{c}\right) & \Longrightarrow T_{2}(n)=O\left(n^{c}\right) \\
T_{3}(n)=2 T_{3}(n / 2)+O\left(n^{c}\right) & \Longrightarrow T_{3}(n)= \begin{cases}O(n \log n) & \text { if } c=1, \\
O\left(n^{c}\right) & \text { if } c>1 .\end{cases}
\end{array}
$$

So in this case, we have $T_{3}(n)=O(M(n) \log n)$ as required.
In reality, $M(n)$ may not be a simple polynomial, but we can effectively ignore any subpolynomial noise using the following trick. Suppose we can write $M(n)=n^{c} \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n) .{ }^{1}$

To solve the recurrence $T_{2}(n)=T_{2}(n / 2)+O(M(n))$, we define a new function $\tilde{T}_{2}(n)=$ $T_{2}(n) / \mu(n)$. Then we have

$$
\tilde{T}_{2}(n)=\frac{T_{2}(n / 2)}{\mu(n)}+\frac{O(M(n))}{\mu(n)} \leq \frac{T_{2}(n / 2)}{\mu(n / 2)}+\frac{O(M(n))}{\mu(n)}=\tilde{T}_{2}(n / 2)+O\left(n^{c}\right) .
$$

Here we used the inequality $\mu(n) \geq \mu(n / 2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_{2}(n) \leq O\left(n^{c}\right)$, and therefore $T_{2}(n) \leq O\left(n^{c}\right) \cdot \mu(n)=O(M(n))$.

Similarly, to solve the recurrence $T_{3}(n)=2 T_{3}(n / 2)+O\left(M(n)\right.$), we define $\tilde{T}_{3}(n)=T_{3}(n) / \mu(n)$, which gives us the recurrence $\tilde{T}_{3}(n) \leq 2 \tilde{T}_{3}(n / 2)+O\left(n^{c}\right)$. The recursion tree method implies

$$
\tilde{T}_{3}(n) \leq \begin{cases}O(n \log n) & \text { if } c=1 \\ O\left(n^{c}\right) & \text { if } c>1\end{cases}
$$

In both cases, we have $\tilde{T}_{3}(n)=O\left(n^{c} \log n\right)$, which implies that $T_{3}(n)=O(M(n) \log n)$.

[^0]
[^0]: ${ }^{1}$ A recent multiplication algorithm based on fast Fourier transforms runs in $O\left(n \log n 2^{O\left(\log ^{*} n\right)}\right)$ time, so we can safely assume that $c=1$. But our solution doesn't use that fact.

