Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these.)

1. FlipOdds $(L):=\{f l i p O d d s(w) \mid w \in L\}$, where the function flipOdds inverts every oddindexed bit in w. For example:

$$
\text { flipOdds(0000111101010101) }=1010010111111111
$$

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdds(L) as follows.

Intuitively, M^{\prime} receives some string flipOdds(w) as input, restores every other bit to obtain w, and simulates M on the restored string w.

Each state ($q, f l i p$) of M^{\prime} indicates that M is in state q, and we need to flip the next input bit if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, FAlSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

2. UnflipOdd1s $(L):=\left\{w \in \Sigma^{*} \mid f l i p O d d 1 s(w) \in L\right\}$, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1 . For example:

$$
\text { flipOdd1s(0000111101010101) }=0000 \underline{\underline{0}} 1 \underline{\underline{0}} 10 \underline{\underline{0}} 010 \underline{0} 01
$$

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts UnflipOdD1s(L) as follows.

Intuitively, M^{\prime} receives some string w as input, flips every other 1 bit, and simulates M on the transformed string.

Each state ($q, f l i p$) of M^{\prime} indicates that M is in state q, and we need to flip the next 1 bit of and only if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, False }\} \\
s^{\prime} & =(s, \text { True }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

3. FLIPOdD1s $(L):=\{f l i p O d d 1 s(w) \mid w \in L\}$, where the function flipOdd1 is defined as in the previous problem.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdd1s (L) as follows.

Intuitively, M^{\prime} receives some string $\operatorname{flipOdd} 1 s(w)$ as input, guesses which 0 bits to restore to 1 s , and simulates M on the restored string w. No string in FlipOdd $1 \mathrm{~s}(L)$ has two 1 s in a row, so if M^{\prime} ever sees 11 , it rejects.

Each state (q, f flip) of M^{\prime} indicates that M is in state q, and we need to flip a 0 bit before the next 1 if flip $=$ True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { TRUE, FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

4. Prove that the language insert $1(L):=\{x 1 y \mid x y \in L\}$ is regular.

Intuitively, insert $1(L)$ is the set of all strings that can be obtained from strings in L by inserting exactly one 1 . For example, if $L=\{\varepsilon, 00 \mathrm{~K}!\}$, then $\operatorname{insert} 1(L)=\{1,100 \mathrm{~K}$!, 010 K !, 001K!,00K1!,00K!1\}.

Solution: Let $M=(\Sigma, Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(\Sigma, Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts insert1 (L) as follows.

Intuitively, M^{\prime} nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest of the input string.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet skipped over a 1.
- The state (q, after) means (the simulation of) M is in state q and M^{\prime} has already skipped over a 1.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { before, after }\} \\
s^{\prime} & =(s, \text { before }) \\
A^{\prime} & = \\
\delta^{\prime}((q, \text { before }), a) & = \\
\delta^{\prime}((q, \text { after }), a) & =
\end{aligned}
$$

Work on these later:

5. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular.

Intuitively, delete $1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1 . For example, if $L=\{101101,00, \varepsilon\}$, then delete $1(L)=$ \{01101, 10101, 10110\}.
6. Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a a \cdot \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO $)=$ PPRREESSTTOO
- stutter $($ HOCUS \diamond POCUS $)=$ HHOOCCUUSS $\diamond \diamond$ PPOOCCUUSS
(a) Prove that the language $\operatorname{stutter}^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.

7. Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens (w) skips over every other symbol in w. For example:

- evens(EXPELLIARMUS) $=$ XELAMS
- evens $($ AVADA $\diamond K E D A V R A)=V D \diamond E A R$.
(a) Prove that the language evens ${ }^{-1}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.

You may find it helpful to imagine these transformations concretely on the following DFA for the language specified by the regular expression $00^{*} 11^{*}$.

