Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these.)

1. FlipOdds $(L):=\{f l i p O d d s(w) \mid w \in L\}$, where the function flipOdds inverts every oddindexed bit in w. For example:

$$
\text { flipOdds }(0000111101010101)=1010010111111111
$$

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FLipOdDs (L) as follows.

Intuitively, M^{\prime} receives some string $f l i p O d d s(w)$ as input, restores every other bit to obtain w, and simulates M on the restored string w.

Each state (q, flip) of M^{\prime} indicates that M is in state q, and we need to flip the next input bit if flip = TRUE.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True }, \text { False }\} \\
s^{\prime} & =(s, \text { True }) \\
A^{\prime} & =A \times\{\text { True, False }\} \\
\delta^{\prime}((q, \text { False }), 0) & =(\delta(q, 0), \text { True }) \\
\delta^{\prime}((q, \text { True }), 0) & =(\delta(q, 1), \text { False }) \\
\delta^{\prime}((q, \text { False }), 1) & =(\delta(q, 1), \text { True }) \\
\delta^{\prime}((q, \text { True }), 1) & =(\delta(q, 0), \text { False })
\end{aligned}
$$

By treating 1 and 0 as synonyms for True and False, respectively, we can rewrite δ^{\prime} more compactly as

$$
\delta^{\prime}((q, f l i p), a)=(\delta(q, a \oplus f l i p), \neg f l i p)
$$

2. UnflipOdd1s $(L):=\left\{w \in \Sigma^{*} \mid\right.$ flipOdd $\left.1 s(w) \in L\right\}$, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1 . For example:

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts UnFLIPOdD1s (L) as follows.

Intuitively, M^{\prime} receives some string w as input, flips every other 1 bit, and simulates M on the transformed string.

Each state (q,flip) of M^{\prime} indicates that M is in state q, and we need to flip the next 1 bit of and only if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True }, \text { FALSE }\} \\
s^{\prime} & =(s, \text { TruE }) \\
A^{\prime} & =A \times\{\text { True }, \text { FALSE }\} \\
\delta^{\prime}((q, \text { FALSE }), 0) & =(\delta(q, 0), \text { FALSE }) \\
\delta^{\prime}((q, \text { True }), 0) & =(\delta(q, 0), \text { True }) \\
\delta^{\prime}((q, \text { FALSE }), 1) & =(\delta(q, 1), \text { True }) \\
\delta^{\prime}((q, \text { TRUE }), 1) & =(\delta(q, 0), \text { FALSE })
\end{aligned}
$$

Once again, by treating 1 and 0 as synonyms for True and False, respectively, we can rewrite δ^{\prime} more compactly as

$$
\delta^{\prime}((q, f l i p), a)=(\delta(q, \neg \text { flip } \wedge a), \text { flip } \oplus a)
$$

3. FLipOdd $1 \mathrm{~s}(L):=\{$ flipOdd $1 s(w) \mid w \in L\}$, where the function flipOdd1 is defined as in the previous problem.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a new NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdd1s (L) as follows.

Intuitively, M^{\prime} receives some string flipOdd $1 s(w)$ as input, guesses which 0 bits to restore to 1 s , and simulates M on the restored string w. No string in FlipOdd $1 \mathrm{~s}(L)$ has two 1 s in a row, so if M^{\prime} ever sees 11 , it rejects.

Each state (q,flip) of M^{\prime} indicates that M is in state q, and we need to flip a 0 bit before the next 1 bit if and only if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, FALSE }\} \\
s^{\prime} & =(s, \text { True }) \\
A^{\prime} & =A \times\{\text { True, FALSE }\} \\
\delta^{\prime}((q, \text { False }), 0) & =\{(\delta(q, 0), \text { False })\} \\
\delta^{\prime}((q, \text { True }), 0) & =\{(\delta(q, 0), \text { True }),(\delta(q, 1), \text { FALSE })\} \\
\delta^{\prime}((q, \text { False }), 1) & =\{(\delta(q, 1), \text { True })\} \\
\delta^{\prime}((q, \text { True }), 1) & =\varnothing
\end{aligned}
$$

The last transition indicates that we waited too long to flip a 0 to a 1 , so we should kill the current execution thread.
4. Prove that the language $\operatorname{insert} 1(L):=\{x 1 y \mid x y \in L\}$ is regular.

Intuitively, insert1 (L) is the set of all strings that can be obtained from strings in L by inserting exactly one 1 . For example, if $L=\{\varepsilon, 00 \mathrm{~K}!\}$, then $\operatorname{insert} 1(L)=\{1,100 \mathrm{~K}!, 010 \mathrm{~K}$!, 001K!,00K1!,00K!1\}.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts insert1 (L) as follows.

Intuitively, M^{\prime} nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest of the input string.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet skipped over a 1.
- The state (q, after) means (the simulation of) M is in state q and M^{\prime} has already skipped over a 1.

$$
\begin{aligned}
Q^{\prime} & :=Q \times\{\text { before, after }\} \\
s^{\prime} & :=(s, \text { before }) \\
A^{\prime} & :=\{(q, \text { after }) \mid q \in A\} \\
\delta^{\prime}((q, \text { before }), a) & = \begin{cases}\{(\delta(q, a), \text { before }),(q, \text { after })\} & \text { if } a=1 \\
\{(\delta(q, a), \text { before })\} & \text { otherwise }\end{cases} \\
\delta^{\prime}((q, \text { after }), a) & =\{(\delta(q, a), \text { after })\}
\end{aligned}
$$

5. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular.

Intuitively, delete $1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1 . For example, if $L=\{101101,00, \varepsilon\}$, then delete $1(L)=$ \{01101, 10101, 10110\}.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ with ε-transitions that accepts delete $1(L)$ as follows.

Intuitively, M^{\prime} simulates M, but inserts a single 1 into M 's input string at a nondeterministically chosen location.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet inserted a 1.
- The state (q, after) means (the simulation of) M is in state q and M^{\prime} has already inserted a 1.

$$
\begin{aligned}
Q^{\prime} & :=Q \times\{\text { before }, \text { after }\} \\
s^{\prime} & :=(s, \text { before }) \\
A^{\prime} & :=\{(q, \text { after }) \mid q \in A\} \\
\delta^{\prime}((q, \text { before }), \varepsilon) & =\{(\delta(q, 1), \text { after })\} \\
\delta^{\prime}((q, \text { after }), \varepsilon) & =\varnothing \\
\delta^{\prime}((q, \text { before }), a) & =\{(\delta(q, a), \text { before })\} \\
\delta^{\prime}((q, \text { after }), a) & =\{(\delta(q, a), \text { after })\}
\end{aligned}
$$

6. Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a \cdot \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO $)=$ PPRREESSTTOO
- $\operatorname{stutter}($ HOCUS \diamond POCUS $)=$ HHOOCCUUSS $\diamond \diamond$ PPOOCCUUSS
(a) Prove that the language $\operatorname{stutter}^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct an DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts stutter ${ }^{-1}(L)$ as follows.

Intuitively, M^{\prime} reads its input string w and simulates M running on $\operatorname{stutter}(w)$. Each time M^{\prime} reads a symbol, the simulation of M reads two copies of that symbol.

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \\
\delta^{\prime}(q, a) & =\delta(\delta(q, a), a)
\end{aligned}
$$

(b) Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. wWe construct an DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts stutter (L) as follows.
M^{\prime} reads the input string stutter(w) and simulates M running on input w.

- State (q, \bullet) means M^{\prime} has just read an even-indexed ${ }^{a}$ symbol in $\operatorname{stutter}(w)$, so M should ignore the next symbol (if any).
- For any symbol $a \in \Sigma$, state (q, a) means M^{\prime} has just read an odd-indexed symbol in $\operatorname{stutter}(w)$, and that symbol was a. If the next symbol is an a, then M should transition normally; otherwise, the simulation should fail.
- The state fail means M^{\prime} has read two successive symbols that should have been equal but were not; the input string is not $\operatorname{stutter}(w)$ for any string w.

$$
\begin{aligned}
Q^{\prime} & =Q \times(\{\bullet\} \cup \Sigma) \cup\{\text { fail }\} & \text { for some new symbol } \bullet \notin \Sigma \\
s^{\prime} & =(s, \bullet) & \\
A^{\prime} & =\{(q, \bullet) \mid q \in A\} & \text { for all } q \in Q \text { and } a \in \Sigma \\
\delta^{\prime}((q, \bullet), a) & =(q, a) & \text { for all } q \in Q \text { and } a, b \in \Sigma \\
\delta^{\prime}((q, a), b) & =\left\{\begin{array}{lll}
(\delta(q, a), \bullet) & \text { if } a=b \\
\text { fail } & \text { if } a \neq b
\end{array}\right. & \text { for all } a \in \Sigma
\end{aligned}
$$

[^0]Solution (via regular expressions): Let R be an arbitrary regular expression. We recursively construct a regular expression $\operatorname{stutter}(R)$ as follows:

$$
\operatorname{stutter}(R):= \begin{cases}\varnothing & \text { if } R=\varnothing \\ \operatorname{stutter}(w) & \text { if } R=w \text { for some string } w \in \Sigma^{*} \\ \operatorname{stutter}(A)+\operatorname{stutter}(B) & \text { if } R=A+B \text { for some regexen } A \text { and } B \\ \operatorname{stutter}(A) \cdot \operatorname{stutter}(B) & \text { if } R=A \bullet B \text { for some regexen } A \text { and } B \\ (\operatorname{stutter}(A))^{*} & \text { if } R=A^{*} \text { for some regex } A\end{cases}
$$

To prove that $L(\operatorname{stutter}(R))=\operatorname{stutter}(L(R))$, we need the following identities for arbitrary languages A and B :

- $\operatorname{stutter}(A \cup B)=\operatorname{stutter}(A) \cup \operatorname{stutter}(B)$
- $\operatorname{stutter}(A \cdot B)=\operatorname{stutter}(A) \cdot \operatorname{stutter}(B)$
- $\operatorname{stutter}\left(A^{*}\right)=(\operatorname{stutter}(A))^{*}$

These identities can all be proved by inductive definition-chasing, after which the claim $L(\operatorname{stutter}(R))=\operatorname{stutter}(L(R))$ follows by induction. We leave the details of the induction proofs as an exercise for a future semester an exam the reader.

Equivalently, we can directly transform R into $\operatorname{stutter}(R)$ by replacing every explicit string $w \in \Sigma^{*}$ inside R with $\operatorname{stutter}(w)$ (with additional parentheses if necessary). For example:

$$
\operatorname{stutter}\left((1+\varepsilon)(01)^{*}(0+\varepsilon)+0^{*}\right)=(11+\varepsilon)(0011)^{*}(00+\varepsilon)+(00)^{*}
$$

Although this may look simpler, actually proving that it works requires the same induction arguments.
7. Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens (w) skips over every other symbol in w. For example:

- evens $($ EXPELLIARMUS $)=$ XELAMS
- evens $(\mathrm{AVADA} \diamond \mathrm{KEDAVRA})=\mathrm{VD} \diamond E A R$.

Once again, let L be an arbitrary regular language.
(a) Prove that the language evens $^{-1}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct a DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts evens ${ }^{-1}(L)$ as follows:

$$
\begin{aligned}
Q^{\prime} & =Q \times\{0,1\} \\
s^{\prime} & =(s, 0) \\
A^{\prime} & =A \times\{0,1\} \\
\delta^{\prime}((q, 0), a) & =(q, 1) \\
\delta^{\prime}((q, 1), a) & =(\delta(q, a), 0)
\end{aligned}
$$

M^{\prime} reads its input string w and simulates M running on evens (w).

- State ($q, 0$) means M^{\prime} has just read an even symbol in w, so M should ignore the next symbol (if any).
- State $(q, 1)$ means M^{\prime} has just read an odd symbol in w, so M should read the next symbol (if any).
(b) Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.

Solution: Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts evens (L) as follows.

Intuitively, M^{\prime} reads the input string evens (w) and simulates M running on string w, while nondeterministically guessing the missing symbols in w.

- When M^{\prime} reads the symbol a from $\operatorname{evens}(w)$, it guesses a symbol $b \in \Sigma$ and simulates M reading ba from w.
- When M^{\prime} finishes $\operatorname{evens}(w)$, it guesses whether w has even or odd length, and in the odd case, it guesses the last symbol in w.

$$
\begin{aligned}
Q^{\prime} & =Q \\
s^{\prime} & =s \\
A^{\prime} & =A \cup\{q \in Q \mid \delta(q, a) \cap A \neq \varnothing \text { for some } a \in \Sigma\} \\
\delta^{\prime}(q, a) & =\bigcup_{b \in \Sigma}\{\delta(\delta(q, b), a)\}
\end{aligned}
$$

[^0]: ${ }^{a}$ The first symbol in the input string has index 1 ; the second symbol has index 2 , and so on.

