
CS/ECE 374 Lab 2½ Solutions Spring 2021

Describe deterministic finite-state automata that accept each of the following languages over
the alphabet Σ = {0,1}. You may find it easier to describe these DFAs formally than to draw
pictures. Either drawings or formal descriptions are acceptable, as long as the states Q, the start
state s, the accept states A, and the transition function δ are all be clear. Try to keep the number
of states small.

1. All strings in which the number of 0s is even and the number of 1s is not divisible by
3.

Solution: We use a standard product construction of two DFAs, one accepting strings
with an even number of 0s, and the other accepting strings where the number of
1s is not a multiple of 3. The product DFA has six states, each labeled with a pair
of integers, one indicating the number 0s read modulo 2, the other indicating the
number of 1s read modulo 3.

Q := {0,1} × {0,1, 2}
s := (0,0)

A := {(0,1), (0,2)}

δ((q, r),0) := (q+ 1 mod 2, r)

δ((q, r),1) := (q, r + 1 mod 3)

In this case, the product DFA is simple enough that we can just draw it out in full. I’ve
drawn the two factor DFAs (in gray) to the left and above for reference.

00 011 02

10 111 12

000000

1

1

1

0

1

00

1

1

0 11 21

1

0 0 0
1

�

1

CS/ECE 374 Lab 2½ Solutions Spring 2021

2. All strings in which the number of 0s is even or the number of 1s is not divisible by 3.

Solution: We use a standard product construction of two DFAs, one accepting strings
with an even number of 0s, and the other accepting strings where the number of
1s is not a multiple of 3. The product DFA has six states, each labeled with a pair
of integers, one indicating the number 0s read modulo 2, the other indicating the
number of 1s read modulo 3.

Q := {0,1} × {0,1, 2}
s := (0,0)

A := {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2)}

δ((q, r),0) := (q+ 1 mod 2, r)

δ((q, r),1) := (q, r + 1 mod 3)

In this case, the product DFA is simple enough that we can just draw it out in full. I’ve
drawn the two factor DFAs (in gray) to the left and above for reference.

00 011 02

10 111 12

000000

1

1

1

0

1

00

1

1

0 11 21

1

0 0 0
1

This is exactly the same DFA as problem 1, except for the accepting states. Similar
standard product constructions yield DFAs for any other boolean combination of these
two factor languages, including the following:

• {w | #(0, w) is even and #(1, w) is divisible by 3}
• {w | #(0, w) is odd or #(1, w) is divisible by 3}
• {w | if #(0, w) is even, then #(1, w) is not divisible by 3}
• {w | if #(1, w) is not divisible by 3, then #(0, w) is even}
• {w | #(0, w) is even if and only if #(1, w) is not divisible by 3}
• {w | #(0, w) is odd if and only if #(1, w) is divisible by 3}

This is why, whenever you describe a product construction, especially for a homework
or exam problem, you must specify the set of accepting states. �

2

CS/ECE 374 Lab 2½ Solutions Spring 2021

3. Given DFAs M1 and M2, all strings in L(M1)⊕ L(M2).

Solution: Weuse a standard product construction of twoDFAs, M1 = (Q1,Σ,δ1, s1, A1)
and M2 = (Q2,Σ,δ2, s2, A2). As observed in the solution the problem 2, the major
difference is the set of accepting states. Here

w ∈ L(M1)⊕ L(M2) ⇐⇒ w ∈ L(M1) xor w ∈ L(M2)

⇐⇒ w /∈ L(M1) xor w ∈ L(M2).

so a state (q, r) should be accepting if and only if q /∈ A1 xor r ∈ A2.

Q :=Q1 ×Q2

s := (s1, s2)

A := {(q, r) ∈Q | q /∈ A1 xor r ∈ A2}

δ((q, r), a) := (δ1(q, a),δ2(r, a))

Since M1 and M2 were given abstractly, the product DFA can only be specified
mathematically. �

3

CS/ECE 374 Lab 2½ Solutions Spring 2021

4. All strings that are both the binary representation of an integer divisible by 3 and the
ternary (base-3) representation of an integer divisible by 4. For example, the string
1100 is an element of this language, because it represents 23 + 22 = 12 in binary and
33 + 32 = 36 in ternary.

Solution: Again, we use a standard product construction of two DFAs, one accepting
binary strings divisible by 3, the other accepting ternary strings divisible by 4. The
product DFA has twelve states, each labeled with a pair of integers: The binary value
read so far modulo 3, and the ternary value read so far modulo 4.

Q := {0, 1,2} × {0,1, 2,3}
s := (0, 0)

A := {(0, 0)}

δ((q, r),0) := (2q mod 3, 3r mod 4)

δ((q, r),1) := (2q+ 1 mod 3, 3r + 1 mod 4)

For reference, here is a drawing of the DFA, with the two factor DFAs (in gray) to the
left and above. We wouldn’t expect you to draw this, especially on exams. Or more
accurately: We would expect you not to draw this, especially on exams. The states of
the factor DFA that maintains ternary-value-mod-4 are deliberately “out of order” to
simplify the drawing.

00 011 02

10 11 12

0

20 21 22

03

13

23

0 0

0

1

1

1

1

1

1 1

1 1

1 1
0 0

0 0

0 0 0 0

0 1 2
0

3

0 0

0

1

1

1

1

0

1

0

0 0

1 1

2

1

�

4

CS/ECE 374 Lab 2½ Solutions Spring 2021

5. All strings in which the subsequence 0101 appears an even number of times.

Solution: Our DFA has 16 states, each labeled with a vector (a, b, c, d) of four bits:

• a is the number of times (mod 2) that we have seen 0.
• b is the number of times (mod 2) we have seen the subsequence 01.
• c is the number of times (mod 2) we have seen the subsequence 010.
• d is the number of times (mod 2) we have seen the subsequence 0101.

Q := {0,1} × {0,1} × {0,1} × {0,1}
s := (0,0, 0,0)

A := {(a, b, c, 0) | a, b, c ∈ {0, 1}}

δ((a, b, c, d),0) := (a+ 1 mod 2, b, c + b mod 2, d)

δ((a, b, c, d),1) := (a, b+ a mod 2, c, d + c mod 2)

This DFA is small enough that we can draw is out in full. It turns out that only eight
of the sixteen states are reachable from the start state; the unreachable states are
grayed out in the figure below.

0000 1000 1100 0110

0001 1001 1101 0111

0

0

0

0

0

00

0
1

1
1

1

1 1

1

1

0100 1110 1011 0011

0101 1111 1010 0010

0

0

0

0

0

00

0
1

1
1

1

1 1

1

1

�

5

CS/ECE 374 Lab 2½ Solutions Spring 2021

6. All strings w such that
�|w|

2

�

mod 6 = 4. [Hint: Maintain both
�|w|

2

�

mod 6 and |w|mod
6.]

Solution: Our DFA has 36 states, each labeled with a pair of integers representing
�|x |

2

�

mod 6 and |x |mod 6, where x is the prefix of the input read so far.

Q := {0,1, 2,3, 4,5} × {0,1, 2,3, 4,5}
s := (0,0)

A := {(4, r) | r ∈ {0, 1,2, 3,4, 5}}

δ((q, r),0) := (q+ r mod 6, r + 1 mod 6)

δ((q, r),1) := (q+ r mod 6, r + 1 mod 6)

The transition function exploits the identity
�n+1

2

�

=
�n

2

�

+ n. �

Solution (sketch): This is the set of all strings w such that |w|mod 12 ∈ {5, 8}. This
language can be accepted using a 12-state DFA. �

6

CS/ECE 374 Lab 2½ Solutions Spring 2021

?7. All strings w such that F#(10,w) mod 10= 4, where #(10, w) denotes the number of times
10 appears as a substring of w, and Fn is the nth Fibonacci number:

Fn =

0 if n= 0

1 if n= 1

Fn−1 + Fn−2 otherwise

Solution: Our DFA has 200 states, each labeled with three values:

• Fk mod 10, where k is the number of times we have seen the substring 10.
• Fk+1 mod 10, where k is the number of times we have seen the substring 10.
• The last symbol read (or 0 if we have read nothing yet)

Here is the formal description:

Q := {0, 1,2, 3,4,5, 6,7, 8,9} × {0,1, 2,3, 4,5, 6,7, 8,9} × {0,1}
s := (0, 1,0)
A := {(4, r, a) | r ∈ {0, 1,2, 3,4, 5,6, 7,8, 9} and a ∈ {0,1}}

δ((q, r,0),0) := (q, r,0)
δ((q, r,1),0) := (r, q+ r mod 10,0)
δ((q, r,0),1) := (q, r,1)
δ((q, r,1),1) := (q, r,1)

The transition function exploits the recursive definition Fk+1 = Fk + Fk−1. �

Solution (sketch): The Fibonacci numbers modulo 10 define a repeating sequence
with period 60. So this language can be accepted by a DFA with “only” 120 states. �

7

