Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma=\{0,1\}$. Describe briefly what each state in your DFAs means.

1. All strings containing the substring 000 .

Solution:

- s : We didn't just read a 0
- a : We've read one 0 since the last 1 or the start of the string.
- b : We've read two 0 s since the last 1 or the start of the string.
- $c:$ We've read the substring 000.

2. All strings not containing the substring 000 .

Solution:

- s : We didn't just read a 0
- a : We've read one 0 since the last 1 or the start of the string.
- b : We've read two 0 s since the last 1 or the start of the string.
- c : We've read the substring 000.
(Yes, these are the same states as in problem 1.)

3. All strings in which every run of 0 s has length at least 3 .

Solution:

- s : We did not just read a 0
- a : We've read one 0 since the last 1 or the start of the string.
- b : We've read two 0 s since the last 1 or the start of the string.
- c : We've read at least three 0 s since the last 1 or the start of the string.
- d : We've read the substring 01 or 001 ; reject.

4. All strings in which no substring 000 appears before a 1 .
(Equivalently: All strings in which every substring 000 appears after every 1.)

Solution: A string is in this language if and only if it does not contain the substring 0001.

- s : We did not just read a 0
- a : We've read one 0 since the last 1 or the start of the string.
- b : We've read two 0 s since the last 1 or the start of the string.
- c : We've read at least three 0 s since the last 1 or the start of the string
- d : We've read the substring 0001; reject.

5. All strings containing at least three 0 s .

Solution:

- s : We've read no 0s.
- a : We've read one 0 .
- b : We've read two 0s.
- c : We've read at least three 0s; accept.

6. Every string except 000. [Hint: Don't try to be clever.]

Solution:

- s : We haven't read anything yet
- a : Input so far is 0 .
- b : Input so far is 00.
- c : Input so far is 000 .
- d : Input is not 000; accept.

Work on these later:

7. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 1 .

Solution: This is the same as the set of strings that alternate between 0 s and 1 s .

- s : We haven't read anything yet
- a : Input so far is an alternating string ending in 0.
- b : Input so far is an alternating string ending in 1.
- c : We've seen the substring 00 or 11 ; reject.

8. All strings containing at least two 0 s and at least one 1 .

Solution:

Each state is labeled with a pair of integers. The first integer indicates the number of 0 s read so far (up to 2), and the second indicates the number of 1 s read so far (up to 1).
9. All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2 .

Solution:

The fail state ∞ indicates that we have read some prefix where the number of 0 s and 1 s differ by more than 2 . Each of the other states states $-2,-1,0,1,2$ indicates the number of 1 s minus the number of 0 s of the prefix read so far.
${ }^{*} 10$. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution:

Each state is labeled with an integer from 0 to 3, indicating how many consecutive 0s have just been read, and a letter e or o, indicating whether we have read an even or odd number of 000 substrings.

