The following problems ask you to prove some "obvious" claims about recursively-defined string functions. In each case, we want a self-contained, step-by-step induction proof that builds on formal definitions and prior reults, *not* on intuition. In particular, your proofs must refer to the formal recursive definitions of string length and string concatenation:

$$|w| := \begin{cases} 0 & \text{if } w = \varepsilon \\ 1 + |x| & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$
$$w \bullet z := \begin{cases} z & \text{if } w = \varepsilon \\ a \cdot (x \bullet z) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

You may freely use the following results, which were proved in the lecture notes:

Lemma 1: $w \bullet \varepsilon = w$ for all strings w.

Lemma 2: $|w \bullet x| = |w| + |x|$ for all strings *w* and *x*.

Lemma 3: $(w \bullet x) \bullet y = w \bullet (x \bullet y)$ for all strings *w*, *x*, and *y*.

The *reversal* w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

For example, $STRESSED^R = DESSERTS$ and $WTF374^R = 473FTW$.

1. Prove that $|w^R| = |w|$ for every string *w*.

Solution (induction on *w*):

Let *w* be an arbitrary string. Assume for any string *x* where |x| < |w| that $|x^{R}| = |x|$.

There are two cases to consider.

• If $w = \varepsilon$, then

$ w^R = \varepsilon $	by definition of R
= w	by definition of $ \cdot $

• Otherwise, w = ax for some symbol *a* and some string *x*. In that case, we have

$$|w^{R}| = |x^{R} \cdot a|$$
 by definition of w^{R}

$$= |x^{R}| + |a|$$
 by Lemma 2

$$= |x^{R}| + 1$$
 by definition of $|\cdot|$ (twice)

$$= |x| + 1$$
 by the induction hypothesis = |w| by definition of $|\cdot|$

In both cases, we conclude that $|w^R| = |w|$.

2. Prove that $(w \bullet z)^R = z^R \bullet w^R$ for all strings *w* and *z*.

Solution (induction on *w*):

Let w and z be arbitrary strings.

Assume for any string x where |x| < |w| that $(x \cdot z)^R = x^R \cdot z^R$.

There are two cases to consider:

• If $w = \varepsilon$, then

$(w \bullet z)^R = z^R$	by definition of $ ullet $
$= z^R \bullet \varepsilon$	by Lemma 1
$= z^R \bullet w^R$	by definition of R

• Otherwise, w = ax for some symbol *a* and some string *x*.

$$(w \cdot z)^{R} = (a \cdot (x \cdot z))^{R}$$
 by definition of •
= $(x \cdot z)^{R} \cdot a$ by definition of R
= $(z^{R} \cdot x^{R}) \cdot a$ by the induction hypothesis, because $|x| < |w|$
= $z^{R} \cdot (x^{R} \cdot a)$ by Lemma 3
= $z^{R} \cdot w^{R}$ by definition of R

In both cases, we conclude that $(w \bullet z)^R = z^R \bullet w^R$.

But how did I know that the induction hypothesis needs to change the first string w, but not the second string z? I wrote down the inductive argument first, and then noticed that in the proof for $w \cdot z$, we needed the inductive hypothesis on $x \cdot z$. Same string z, but w changed to x. Alternatively, in light of Lemma 2, I could have inducted on the **sum** of the string lengths with the inductive hypothesis "Assume for all strings x and y such that |x| + |y| < |w| + |z| that $(x \cdot y)^R = x^R \cdot y^R$."

3. Prove that $(w^R)^R = w$ for every string *w*.

Solution (induction on *w*):

Let *w* be an arbitrary string.

Assume for any string x where |x| < |w| that $(x^R)^R = x$.

There are two cases to consider.

- If $w = \varepsilon$, then $(w^R)^R = \varepsilon^R = \varepsilon$ by definition.
- Otherwise, w = ax for some symbol *a* and some string *x*.

by definition of ^{<i>I</i>}	$(w^R)^R = (x^R \bullet a)^R$
by problem 2	$=a^{R} \bullet (x^{R})^{R}$
by definition of ^{<i>I</i>}	$= a \bullet (x^R)^R$
by definition of	$= a \cdot (x^R)^R$
by the induction hypothesis	$= a \cdot x$
by assumption	= w

In both cases, we conclude that $(w^R)^R = w$.

To think about later: Let #(a, w) denote the number of times symbol *a* appears in string *w*. For example, #(X, WTF374) = 0 and #(0,0000101010010100) = 12.

4. Give a formal recursive definition of #(a, w).

Solution:

 $#(a,w) = \begin{cases} 0 & \text{if } w = \varepsilon \\ 1 + #(a,x) & \text{if } w = ax \text{ for some string } x \\ #(a,x) & \text{if } w = bx \text{ for some symbol } b \neq a \text{ and some string } x \end{cases}$

5. Prove that $\#(a, w \bullet z) = \#(a, w) + \#(a, z)$ for all symbols *a* and all strings *w* and *z*.

Solution (induction on *w*):

Let *a* be an arbitrary symbol, and let *w* and *z* be arbitrary strings. Assume for any string *x* such that |x| < |w| that $\#(a, x \cdot z) = \#(a, x) + \#(a, z)$. There are three cases to consider.

• If $w = \varepsilon$, then

$$#(a, w \bullet x) = #(a, x)$$
by definition of •
= #(a, w) + #(a, x) by definition of #

• If w = ax for some string *x*, then

$$#(a, w \cdot z) = #(a, ax \cdot z)$$
 by definition of •

$$= #(a, a \cdot (x \cdot z))$$
 by definition of •

$$= 1 + #(a, x \cdot z)$$
 by definition of #

$$= 1 + #(a, x) + #(a, z)$$
 by the induction hypothesis

$$= #(a, ax) + #(a, z)$$
 by definition of #

$$= #(a, w) + #(a, z)$$
 because $w = ax$

• If w = bx for some symbol $b \neq a$ and some string x, then

by definition of •	$\#(a, w \bullet z) = \#(a, b \cdot (x \bullet z))$
by definition of #	$=$ # $(a, x \bullet z)$
by the induction hypothesis	= #(a,x) + #(a,z)
by definition of #	= #(a, bx) + #(a, z)
because $w = bx$	= #(a, w) + #(a, z)

In every case, we conclude that $\#(a, w \bullet z) = \#(a, w) + \#(a, z)$.

6. Prove that $\#(a, w^R) = \#(a, w)$ for all symbols *a* and all strings *w*.

Solution (induction on w**):** Let a be an arbitrary symbol, and let w be an arbitrary string. Assume for any string x such that |x| < |w| that $\#(a, x^R) = \#(a, x)$. There are three cases to consider.

- If $w = \varepsilon$, then $w^R = \varepsilon = w$ by definition, so $\#(a, w^R) = \#(a, w)$.
- If w = ax for some string x, then

by definition of ^{<i>R</i>}	$\#(a, w^R) = \#(a, x^R \bullet a)$
by problem 5	$= #(a, x^R) + #(a, a)$
by definition of #	$= \#(a, x^R) + 1$
by the induction hypothesis	= #(a, x) + 1
by definition of #	= #(a, w)

• If w = bx for some symbol $b \neq a$ and some string *x*, then

by definition of ^{<i>R</i>}	$\#(a,w^R) = \#(a,x^R \bullet b)$
by problem 5	$= #(a, x^R) + #(a, b)$
by definition of #	$=$ # (a, x^R)
by the induction hypothesis	= #(a, x)
by definition of #	= #(a, w)

In every case, we conclude that $\#(a, w^R) = \#(a, w)$.