CS/ECE 374A, Fall 2022

Proving Non-regularity

Lecture 6
Thursday, September 8, 2022

LATEXed: September 13, 2022 10:01

CS/ECE 374A, Fall 2022

6.1 Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem 6.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- ightharpoonup Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- ► Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- ► Hence there must be a non-regular language!

A direct proof

$$L = \{0^{i}1^{i} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem 6.2.

L is not regular.

A Simple and Canonical Non-regular Language

$$L = \{0^{i}1^{i} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem 6.3.

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

- ▶ Suppose *L* is regular. Then there is a DFA *M* such that L(M) = L.
- ► Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0^n total of n+1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^i 1^i$ but then it will also accept $0^j 1^i$ where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

CS/ECE 374A, Fall 2022

6.2

When two states are equivalent?

Equivalence between states

Definition 6.1.

 $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition 6.2.

 $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

$$\delta^*(p,w) \in A$$
 and $\delta^*(q,w) \notin A$.

or

$$\delta^*(p,w) \notin A$$
 and $\delta^*(q,w) \in A$.

Distinguishable prefixes

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition 6.3.

Two strings $u, w \in \Sigma^*$ are <u>distinguishable</u> for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition 6.4 (Direct restatement).

Two prefixes $u, w \in \Sigma^*$ are distinguishable for a language L if there exists a string x, such that $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and $wx \in L$).

Distinguishable means different states

Lemma 6.5.

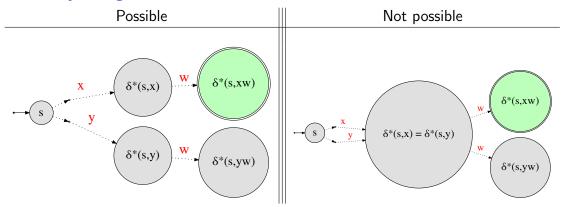
L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s,x) \in Q$ and $\nabla y = \delta^*(s,y) \in Q$

Proof by a figure



Distinguishable strings means different states: Proof

Lemma 6.6.

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$$

 $=\delta^*(s,yw)=\nabla yw\notin A.$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Assumption that $\nabla x = \nabla y$ is false.

Review questions...

- 1. Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k1^k \mid k \geq 0\}$.
- 2. Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
- 3. Prove that $\{0^k 1^k \mid k \geq 0\}$ is not regular.

CS/ECE 374A, Fall 2022

6.3

Fooling sets: Proving non-regularity

Fooling Sets

Definition 6.1.

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \geq 0\}$.

Theorem 6.2.

Suppose F is a fooling set for L. If F is finite then there is no \overline{DFA} M that accepts L with less than |F| states.

Recall

Already proved the following lemma:

Lemma 6.3.

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Proof of theorem

Theorem 6.4 (Reworded.).

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

By lemma $q_i \neq q_i$ for all $i \neq j$.

As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |F|$.

Infinite Fooling Sets

Corollary 6.5.

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in *M* is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

19 / 50

Examples

- ▶ $\{0^k 1^k \mid k \ge 0\}$
- ► {bitstrings with equal number of 0s and 1s}

Harder example: The language of squares is not regular $\{0^{k^2} \mid k \geq 0\}$

Really hard: Primes are not regular

An exercise left for your enjoyment

```
\{\mathbf{0}^{k} \mid \mathbf{k} \text{ is a prime number}\}
```

- 1. Probably easier to prove directly on the automata.
- 2. There are infinite number of prime numbers.
- 3. For every n > 0, observe that $n!, n! + 1, \ldots, n! + n$ are all composite there are arbitrarily big gaps between prime numbers.

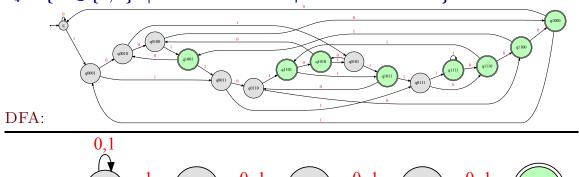
CS/ECE 374A, Fall 2022

6.3.1

Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

 $\mathit{L}_{4} = \{w \in \{0,1\}^{*} \mid w \text{ has a } 1 \text{ located 4 positions from the end}\}$



NFA: q1 q1 q2 q3 q4

Exponential gap between NFA and DFA size

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem 6.6.

Every DFA that accepts L_k has at least 2^k states.

Claim 6.7.

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

Why?

- ightharpoonup Suppose $a_1a_2\ldots a_k$ and $b_1b_2\ldots b_k$ are two distinct bitstrings of length k
- ▶ Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set **F**?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k 1^k \mid k \ge 0\}$ do not pick 1 and 10 (say). Why?

CS/ECE 374A, Fall 2022

6.4

Closure properties: Proving non-regularity

Non-regularity via closure properties

 $H = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

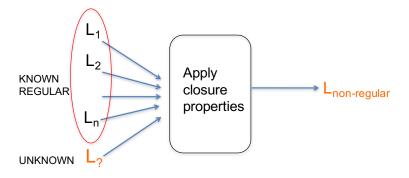
$$H'=H\cap L(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

Non-regularity via closure properties

General recipe:



Proving non-regularity: Summary

- ▶ Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.
- ► Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- ▶ Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

CS/ECE 374A, Fall 2022

6.5 Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

CS/ECE 374A, Fall 2022

6.5.1

Myhill-Nerode Theorem: Equivalence between strings

Indistinguishability

Recall:

Definition 6.1.

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

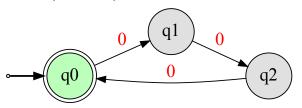
Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Definition 6.2.

 $x \equiv_{\mathsf{L}} y$ means that $\forall w \in \Sigma^*$: $xw \in \mathsf{L} \iff yw \in \mathsf{L}$.

In words: x is equivalent to y under L.

Example: Equivalence classes



Indistinguishability

Claim 6.3.

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

Proof.

- 1. Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- 2. Symmetry: $x \equiv_L y$ then $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^*$: $yw \in L \iff xw \in L \implies y \equiv_L x$.
- 3. Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*: xw \in L \iff yw \in L \text{ and } \forall w \in \Sigma^*: yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*: xw \in L \iff zw \in L$ $\implies x \equiv_L z.$

Equivalences over automatas...

Claim 6.4 (Just proved.).

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

Therefore, \equiv_{L} partitions Σ^* into a collection of equivalence classes.

Definition 6.5.

L: A language For a string $x \in \Sigma^*$, let

$$[x] = [x]_L = \{ y \in \mathbf{\Sigma}^* \mid x \equiv_L y \}$$

be the equivalence class of x according to L.

Definition 6.6.

 $[L] = \{[x]_L \mid x \in \Sigma^*\}$ is the set of equivalence classes of L.

Strings in the same equivalence class are indistinguishable

Lemma 6.7.

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Proof.

 $x \equiv_{L} y \implies \forall w \in \Sigma^{*}: xw \in L \iff yw \in L$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^* : xw \in L \text{ and } yw \not\in L$

 \implies x and y are distinguishable for L.

All strings arriving at a state are in the same class

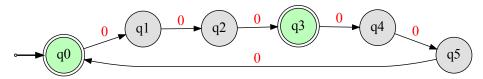
Lemma 6.8.

 $M = (Q, \Sigma, \delta, s, A)$ a DFA for a language L.

For any $q \in A$, let $L_q = \{ w \in \Sigma^* \mid \nabla w = \delta^*(s, w) = q \}$.

Then, there exists a string x, such that $L_q \subseteq [x]_L$.

An inefficient automata



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

6.5.2

Stating and proving the Myhill-Nerode Theorem

Equivalences over automatas...

Claim 6.9 (Just proved).

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Corollary 6.10.

If \equiv_L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary 6.11.

If $\equiv_{\mathbf{L}}$ has infinite number of equivalence classes $\implies \exists$ infinite fooling set for \mathbf{L} .

 \implies **L** is not regular.

Equivalence classes as automata

Lemma 6.12.

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

Proof.

```
[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L
\implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L \qquad // w = aw'
\implies [xa]_L = [ya]_L.
```

Set of equivalence classes

Lemma 6.13.

If L has n distinct equivalence classes, then there is a $\overline{\mathrm{DFA}}$ that accepts it using n states.

Proof.

```
Set of states: Q = [L]

Start state: s = [\varepsilon]_L.

Accept states: A = \{[x]_L \mid x \in L\}.

Transition function: \delta([x]_L, a) = [xa]_L.

M = (Q, \Sigma, \delta, s, A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.
```

Myhill-Nerode Theorem

Theorem 6.14 (Myhill-Nerode).

L is regular $\iff \equiv_{\mathsf{L}}$ has a finite number of equivalence classes.

If \equiv_L is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary 6.15.

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Exercise

- 1. Given two DFAs M_1 , M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.
- 2. Given DFA M, and two states q, q' of M, show an efficient algorithm to decide if q and q' are distinguishable. (Hint: Use the first part.)
- 3. Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

6.6

Roads not taken: Non-regularity via pumping lemma

Non-regularity via "looping"

Claim 6.1.

The language $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Proof: Assume for contradiction *L* is regular.

$$\implies$$
 \exists DFA $M = (Q, \Sigma, \delta, q_0, F)$ for L . That is $L = L(M)$.

n = |Q|: number of states of M.

Consider the string $a^n b^n$. Let $p_{\tau} = \delta^*(q_0, a^{\tau})$, for $\tau = 0, \ldots, n$.

 $p_0p_1 \dots p_n$: n+1 states. M has n states.

By pigeon hole principle, must be i < j, such that $p_i = p_j$.

$$\implies \delta^*(p_i.a^{j-i}) = p_i \text{ (its a loop!)}.$$

For $x = a^i$, $y = a^{j-i}$, $z = a^{n-j}b^n$, we have

$$\delta^*(q_0, a^{n+j-i}b^n) = \delta^*(q_0, xyyz) = \delta^*\left(\delta^*(\delta^*(q_0, x), y), y\right), z$$

Proof continued

Non-regularity via "looping"

We have: $p_i = \delta^*(q_0, a^i)$ and $\delta^*(p_i.a^{j-}) = p_i$.

$$\delta^*(q_0, a^{n+j-i}b^n) = \delta^* \left(\delta^* \left(\delta^* (q_0, a^i), a^{j-i} \right), a^{j-i} \right), a^{n-j}b^n \right)$$

$$= \delta^* \left(\delta^* \left(\delta^* \left(\delta^* (p_i, a^{j-i}), a^{j-i} \right), a^{n-j}b^n \right) \right)$$

$$= \delta^* \left(\delta^* \left(\delta^* \left(\delta^* (q_0, a^i), a^{j-i} \right), a^{n-j}b^n \right) \right)$$

$$= \delta^* \left(\delta^* \left(\delta^* \left(p_i, a^{j-i} \right), a^{n-j}b^n \right) \right)$$

$$= \delta^* (q_0, a^n b^n) \in A.$$

$$\implies a^{n+j-i}b^n\in L$$
, which is false. Contradiction. \Box

The pumping lemma

The previous argument implies that any regular language must suffer from loops (we omit the proof):

Theorem 6.2 (Pumping Lemma.).

Let **L** be a regular language. Then there exists an integer **p** (the "pumping length") such that for any string $\mathbf{w} \in \mathbf{L}$ with $|\mathbf{w}| \geq \mathbf{p}$, \mathbf{w} can be written as $\mathbf{x}\mathbf{y}\mathbf{z}$ with the following properties:

- $ightharpoonup |xy| \leq p$.
- $|y| \ge 1$ (i.e. y is not the empty string).
- \triangleright $xy^kz \in L$ for every $k \geq 0$.