CS/ECE 374A, Fall 2022

NP and **NP** Completeness

Lecture 23 Tuesday, November 29, 2022

LATEXed: October 13, 2022 14:18

CS/ECE 374A, Fall 2022

23.1

NP-Completeness: Cook-Levin Theorem

CS/ECE 374A, Fall 2022

23.1.1 Completeness

NP: Non-deterministic polynomial

Definition 23.1.

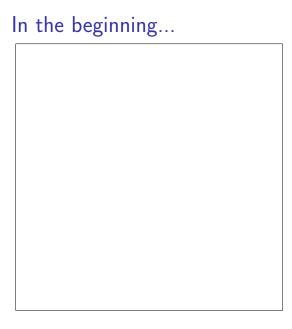
A decision problem is in NP, if it has a polynomial time certifier, for all the all the YES instances.

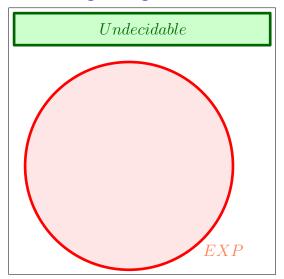
Definition 23.2.

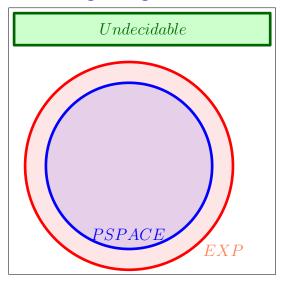
A decision problem is in **co-NP**, if it has a polynomial time certifier, for all the NO instances.

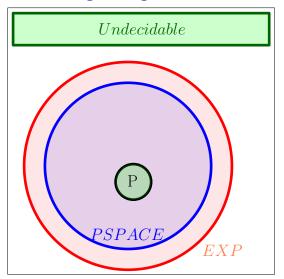
Example 23.3.

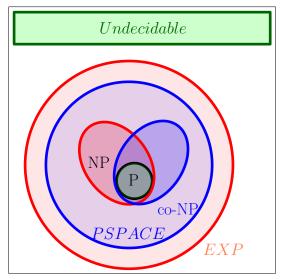
- 1. **3SAT** is in **NP**.
- 2. But **Not3SAT** is in **co-NP**.

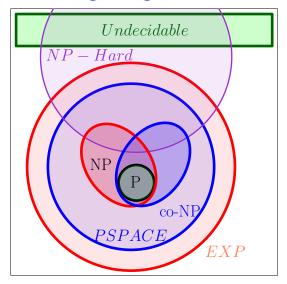


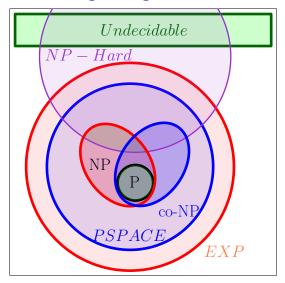


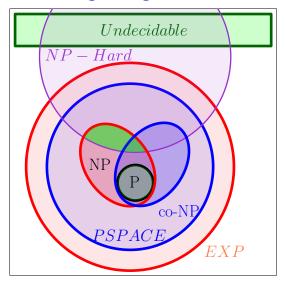


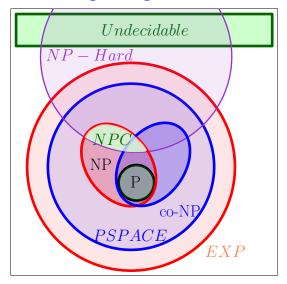












"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- 1. Hardest problem must be in NP.
- 2. Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition 23.4.

A problem **X** is said to be **NP-Complete** if

- 1. $X \in NP$, and
- 2. (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving **NP-Complete** Problems

Proposition 23.5.

Suppose X is NP-Complete. Then X can be solved in polynomial time \iff P = NP.

Proof.

- ⇒ Suppose **X** can be solved in polynomial time
 - 0.1 Let $Y \in NP$. We know $Y \leq_P X$.
 - 0.2 We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - 0.3 Thus, every problem $\mathbf{Y} \in \mathbf{NP}$ is such that $\mathbf{Y} \in \mathbf{P}$.
 - $0.4 \implies NP \subseteq P.$
 - 0.5 Since $P \subseteq NP$, we have P = NP.
- \leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition 23.6.

A problem **X** is said to be **NP-Hard** if

1. (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X} .

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X} .

If X is NP-Complete

- 1. Since we believe $P \neq NP$,
- 2. and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \mathbf{X} .

CS/ECE 374A, Fall 2022

23.1.2 SAT is NP-Complete

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

Cook-Levin Theorem

Theorem 23.7 (Cook-Levin).

SAT *is* **NP-Complete**.

Need to show

- 1. SAT is in NP.
- 2. every **NP** problem **X** reduces in polynomial time to **SAT**.

Might see proof later...

Steve Cook won the Turing award for his theorem.

Cook-Levin Theorem

Theorem 23.7 (Cook-Levin).

SAT is NP-Complete.

Need to show

- 1. **SAT** is in **NP**.
- 2. every **NP** problem **X** reduces in polynomial time to **SAT**.

Might see proof later...

Steve Cook won the Turing award for his theorem.

CS/ECE 374A, Fall 2022

23.1.3 Other NP Complete Problems

Proving that a problem **X** is **NP-Complete**

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- 2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT \leq_P **X** implies that every **NP** problem **Y** \leq_P **X**. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Proving that a problem **X** is **NP-Complete**

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- 2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT \leq_P **X** implies that every **NP** problem **Y** \leq_P **X**. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Proving that a problem **X** is **NP-Complete**

To prove **X** is **NP-Complete**, show

- 1. Show that **X** is in **NP**.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as SAT to X

SAT \leq_P **X** implies that every **NP** problem **Y** \leq_P **X**. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- ▶ 3-SAT is in NP
- \triangleright SAT $<_P$ 3-SAT as we saw

NP-Completeness via Reductions

- 1. **SAT** is **NP-Complete** due to Cook-Levin theorem
- 2. SAT \leq_{P} 3-SAT
- 3. 3-SAT \leq_P Independent Set
- 4. Independent Set ≤_P Vertex Cover
- 5. Independent Set \leq_P Clique
- 6. 3-SAT \leq_P 3-Color
- 7. 3-SAT \leq_{P} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

- 1. **SAT** is **NP-Complete** due to Cook-Levin theorem
- 2. SAT \leq_{P} 3-SAT
- 3. 3-SAT \leq_P Independent Set
- 4. Independent Set \leq_P Vertex Cover
- 5. Independent Set \leq_P Clique
- 6. 3-SAT \leq_P 3-Color
- 7. 3-SAT \leq_{P} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

CS/ECE 374A, Fall 2022

23.2

Reducing **3-SAT** to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

Lemma 23.1.

Independent set is in NP

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

Lemma 23.1.

Independent set is in NP.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of

size \mathbf{k} if and only if φ is satisfiable.

 \mathbf{G}_{arphi} should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a 3 CNF formula φ

Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an independent set of

size ${\bf k}$ if and only if ${m arphi}$ is satisfiable.

 ${f G}_{arphi}$ should be constructable in time polynomial in size of ${m arphi}$

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_P Independent Set$

The reduction $3SAT \leq_P Independent Set$

Input: Given a 3 CNF formula φ

Goal: Construct a graph \mathbf{G}_{φ} and number \mathbf{k} such that \mathbf{G}_{φ} has an independent set of

size \mathbf{k} if and only if φ is satisfiable.

 ${f G}_{arphi}$ should be constructable in time polynomial in size of ${m arphi}$

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

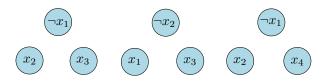
- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

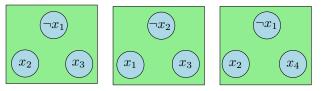
- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick $\mathbf{x_i}$ and $\neg \mathbf{x_i}$

1. \mathbf{G}_{φ} will have one vertex for each literal in a clause

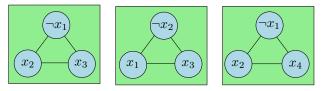
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take k to be the number of clauses



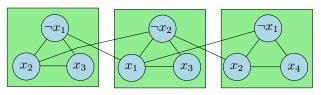
- 1. \mathbf{G}_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take k to be the number of clauses



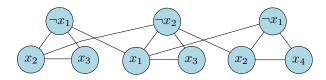
- 1. \mathbf{G}_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take k to be the number of clauses



- 1. \mathbf{G}_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take k to be the number of clauses



- 1. \mathbf{G}_{ω} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses



Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - ▶ Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let **a** be the truth assignment satisfying φ
 - ▶ Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- ← Let **S** be an independent set of size **k**
 - 1. **S** must contain exactly one vertex from each clause
 - 2. S cannot contain vertices labeled by conflicting literals
 - 3. Thus, it is possible to obtain a truth assignment that makes in the literals in **S** true; such an assignment satisfies one literal in every clause

Summary

Theorem 23.3.

Independent set is NP-Complete (i.e., NPC).

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

23.3

NP-Completeness of Hamiltonian Cycle

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

23.3.1

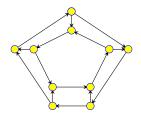
Reduction from 3SAT to Hamiltonian Cycle: Basic idea

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

► A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once

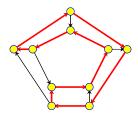


Directed Hamiltonian Cycle

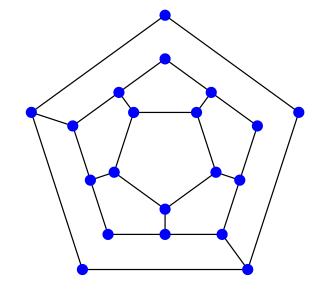
Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

▶ A Hamiltonian cycle is a cycle in the graph that visits every vertex in**G** exactly once



Is the following graph Hamiltonian?



- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is **NP-Complete**

- ▶ Directed Hamiltonian Cycle is in **NP**: exercise
- ► Hardness: We will show 3SAT \leq_P Directed Hamiltonian Cycle.

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph \mathbf{G}_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup {\sf G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph \mathbf{G}_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup {\sf G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

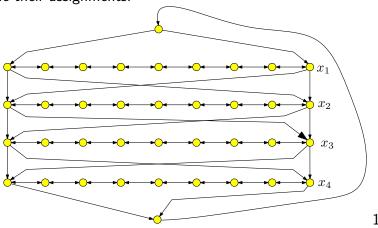
- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph \mathbf{G}_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $lackbox{\sf G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses $\mathbf{C}_1, \mathbf{C}_2, \ldots, \mathbf{C}_m$.

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph \mathbf{G}_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $ightharpoonup {\sf G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses $\mathbf{C}_1, \mathbf{C}_2, \ldots, \mathbf{C}_m$.

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $ightharpoonup {\sf G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses $\mathbf{C}_1, \mathbf{C}_2, \ldots, \mathbf{C}_m$.

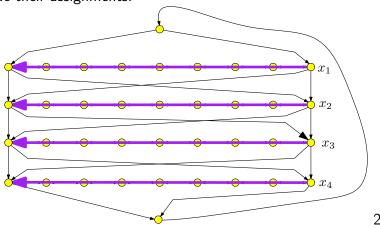
Converting φ to a graph

Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



Converting φ to a graph

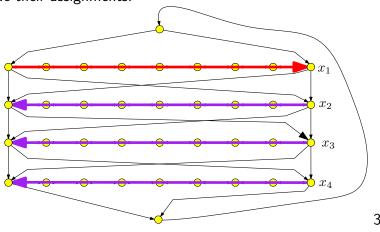
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

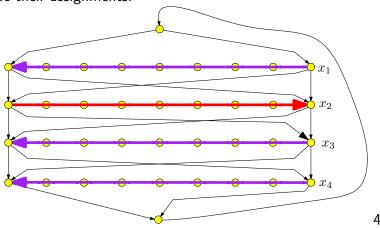
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

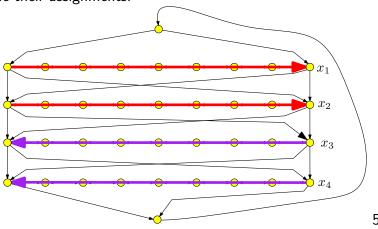
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

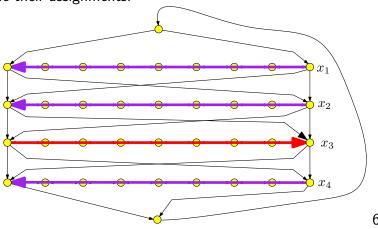
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

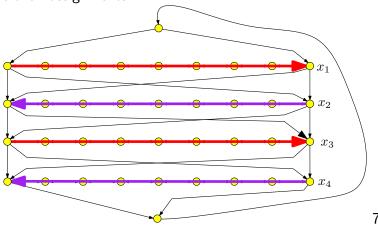
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

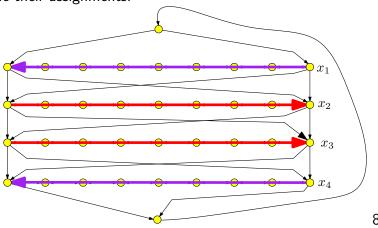
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

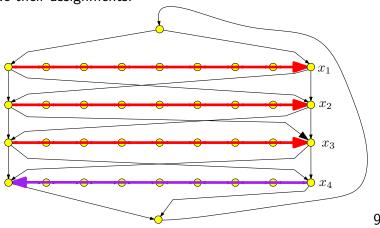
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0$$

Converting φ to a graph

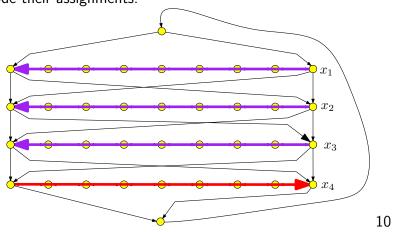
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 01$$

Converting φ to a graph

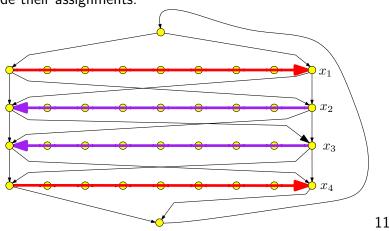
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$$

Converting φ to a graph

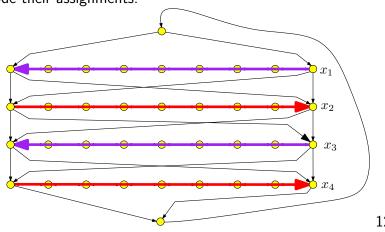
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1$$

Converting φ to a graph

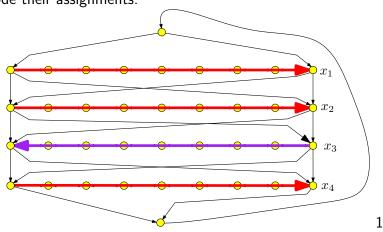
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1$$

Converting φ to a graph

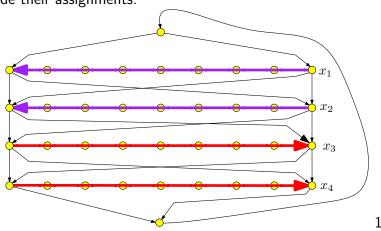
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$

Converting φ to a graph

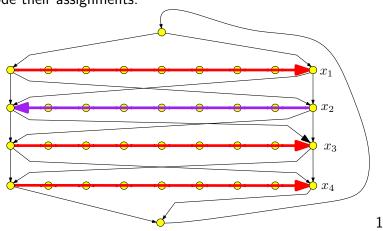
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$$

Converting φ to a graph

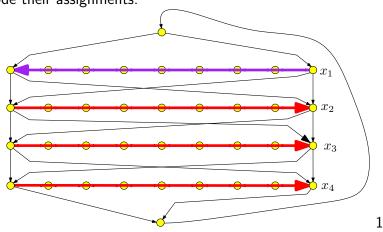
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1$$

Converting φ to a graph

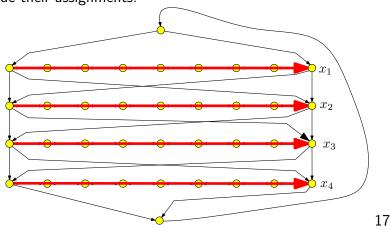
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

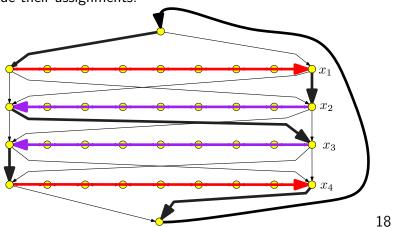
Given a formula with \mathbf{n} variables, we need a graph with $\mathbf{2}^{\mathbf{n}}$ different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

23.3.2

The reduction: Encoding the formula constraints

3SAT \leq_{P} Directed Hamiltonian Cycle

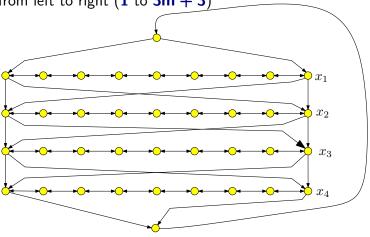
Input: φ formula.
Output: Graph G_{φ} .

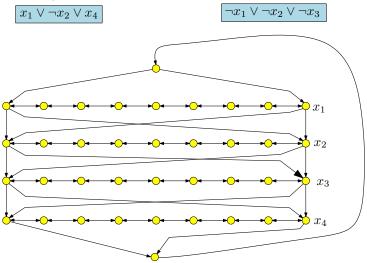
Saw: How to encode assignments... Now need to encode constraints of φ .

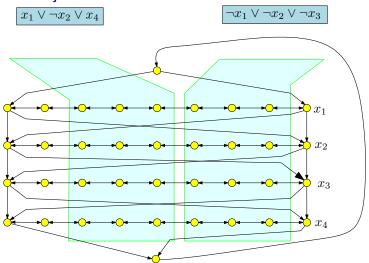
Converting φ to a graph

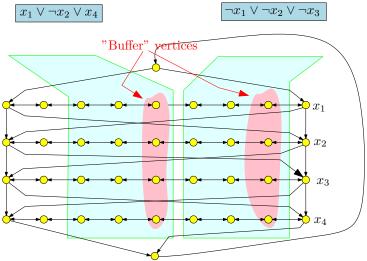
ightharpoonup Traverse path **i** from left to right iff x_i is set to true

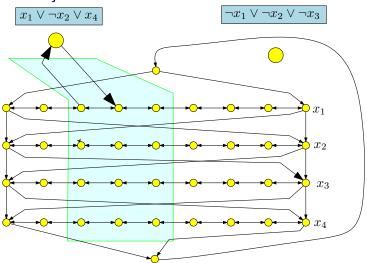
Each path has 3(m + 1) nodes where **m** is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)

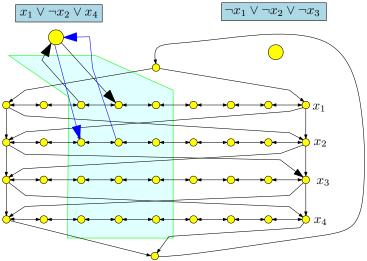


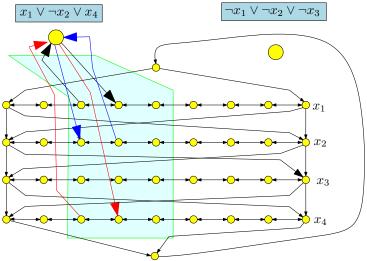


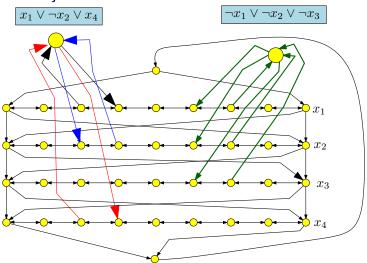












Intro. Algorithms & Models of Computation

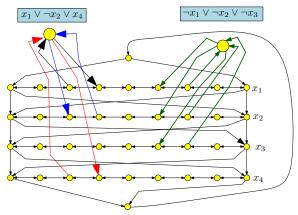
CS/ECE 374A, Fall 2022

23.3.3

If there is a satisfying assignment, then there is a Hamiltonian cycle

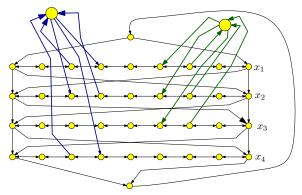
3SAT formula φ :

$$\varphi = (\mathbf{x}_1 \vee \neg \mathbf{x}_2 \vee \mathbf{x}_4)$$
$$\wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2 \vee \neg \mathbf{x}_3)$$



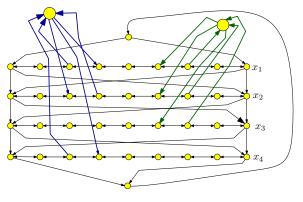
3SAT formula φ :

$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



3SAT formula φ :

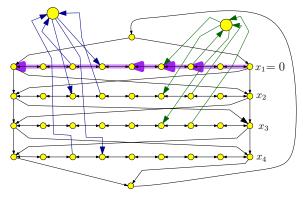
$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3SAT formula φ :

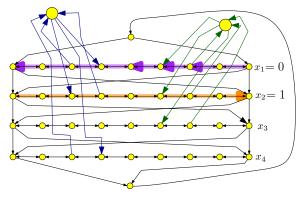
$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3SAT formula φ :

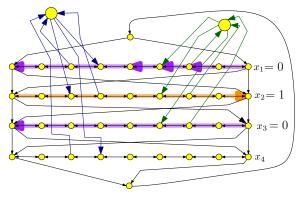
$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3SAT formula φ :

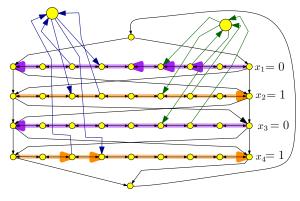
$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



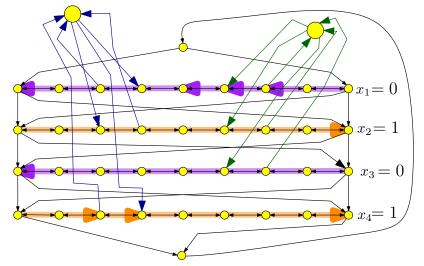
$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3SAT formula φ :

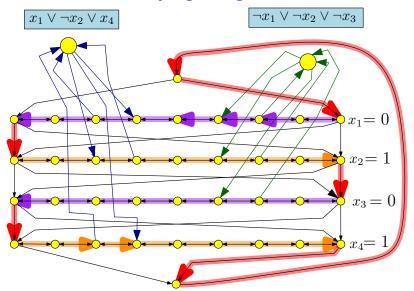
$$\varphi = (\mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \mathbf{x}_4)$$
$$\land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_3)$$



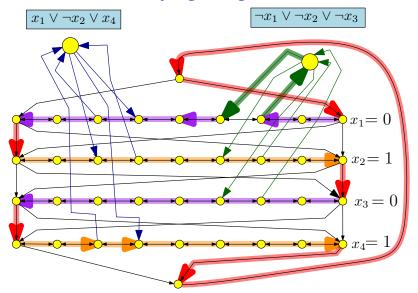
$$x_1 = 0$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$



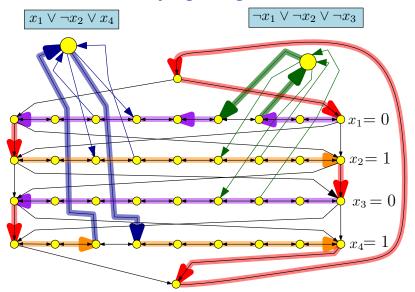
Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$



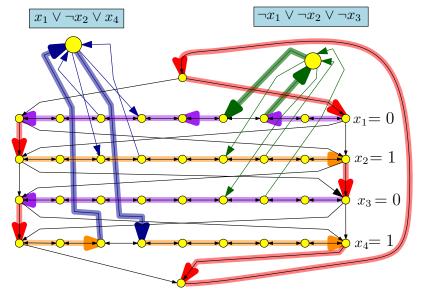
Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$



Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$



Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$



Satisfying assignment: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

Conclude: If φ has a satisfying assignment then there is an Hamiltonian cycle in G_{φ} .

Correctness Proof

Lemma 23.1.

 φ has a satisfying assignment $\alpha \implies \mathbf{G}_{\varphi}$ has a Hamiltonian cycle.

Proof.

Let a be the satisfying assignment for φ . Define Hamiltonian cycle as follows

- ▶ If $\alpha(x_i) = 1$ then traverse path i from left to right
- ▶ If $\alpha(x_i) = 0$ then traverse path i from right to left
- ► For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause
- ► Clearly, resulting cycle is Hamiltonian.

Intro. Algorithms & Models of Computation

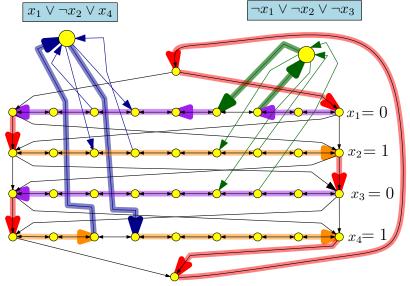
CS/ECE 374A, Fall 2022

23.3.4

If there is a Hamiltonian cycle \Longrightarrow

Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

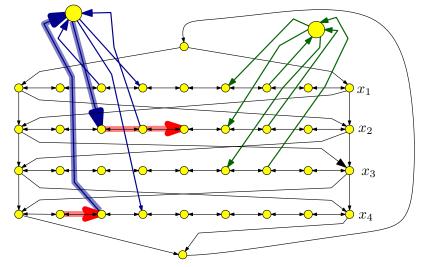
We are given a Hamiltonian cycle in G_{φ} :



Want to extract satisfying assignment...

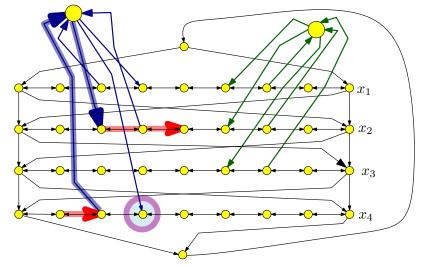
Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle



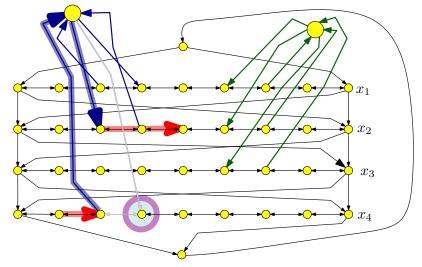
Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle



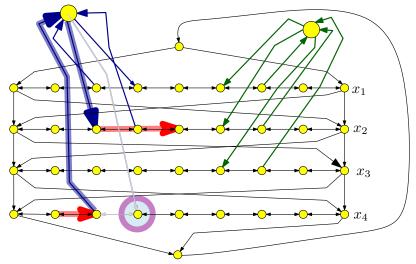
Reduction: Hamiltonian cycle ⇒ ∃ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle



Reduction: Hamiltonian cycle $\implies \exists$ satisfying assignment

No shenanigan: Hamiltonian cycle can not leave a row in the middle



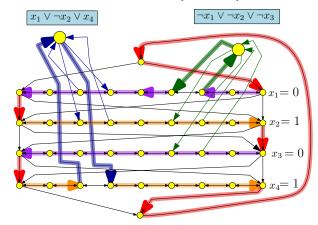
Conclude: Hamiltonian cycle must go through each row completely from left to right, or right to left. As such, can be interpreted as a valid assignment.

Suppose Π is a Hamiltonian cycle in G_{φ}

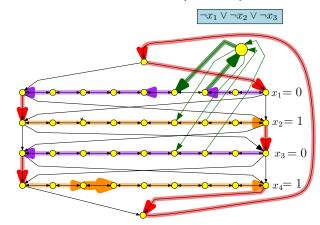
- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - ▶ If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - ► Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- ightharpoonup Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

- ▶ Thus, vertices visited immediately before and after C_i are connected by an edge
- ightharpoonup We can remove $\mathbf{c_i}$ from cycle, and get Hamiltonian cycle in $\mathbf{G} \mathbf{c_i}$
- ightharpoonup Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

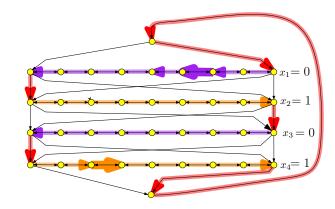
- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G − c_j
- Consider Hamiltonian cycle in G − {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G − c_i
- Consider Hamiltonian cycle in G − {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



- Thus, vertices visited immediately before and after
 C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in G — c_j
- Consider Hamiltonian cycle in G − {c₁,...c_m}; it traverses each path in only one direction, which determines the truth assignment



Correctness Proof

We just proved:

Lemma 23.2.

 \mathbf{G}_{arphi} has a Hamiltonian cycle $\implies \varphi$ has a satisfying assignment lpha.

Lemma 23.3.

arphi has a satisfying assignment iff \mathbf{G}_{arphi} has a Hamiltonian cycle

Proof.

Follows from Lemma 23.1 and Lemma 23.2

Correctness Proof

We just proved:

Lemma 23.2.

 \mathbf{G}_{arphi} has a Hamiltonian cycle $\implies \varphi$ has a satisfying assignment α .

Lemma 23.3.

arphi has a satisfying assignment iff \mathbf{G}_{arphi} has a Hamiltonian cycle.

Proof.

Follows from Lemma 23.1 and Lemma 23.2.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- Provided a polynomial time reduction from 3SAT to Directed Hamiltonian Cycle.
- 3. Proved that φ satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.

Theorem 23.4

The problem Hamiltonian Cycle in directed graphs is NP-Complete.

Summary

What we did:

- 1. Showed that **Directed Hamiltonian Cycle** is in **NP**.
- Provided a polynomial time reduction from 3SAT to Directed Hamiltonian Cycle.
- 3. Proved that φ satisfiable \iff \mathbf{G}_{φ} is Hamiltonian.

Theorem 23.4.

The problem Hamiltonian Cycle in directed graphs is NP-Complete.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

23.4

Hamiltonian cycle in undirected graph

Hamiltonian Cycle

Problem 23.1.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem 23.2.

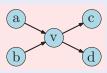
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- ▶ The problem is in **NP**; proof left as exercise.
- ► Hardness proved by reducing Directed Hamiltonian Cycle to this problem

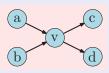
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ightharpoonup Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ► A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



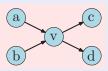
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- ► Replace each vertex **v** by 3 vertices: **v**_{in}, **v**, and **v**_{out}
- ► A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



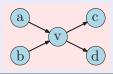
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

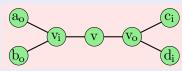
- ► Replace each vertex **v** by 3 vertices: **v**_{in}, **v**, and **v**_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

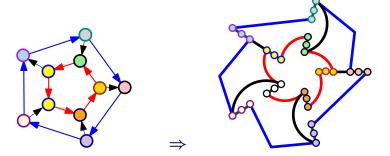


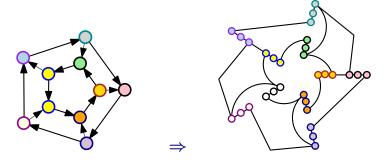
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

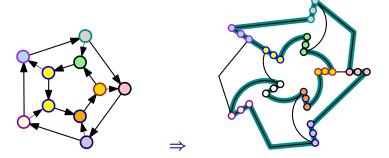
- ► Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- ightharpoonup A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

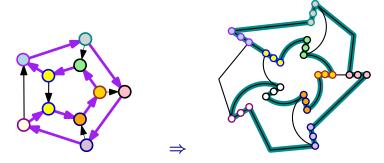












Reduction: Wrap-up

- ► The reduction is polynomial time (exercise)
- ► The reduction is correct (exercise)