Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

Non-deterministic Finite Automata (NFAs)

Lecture 4

Thursday, September 1, 2022

LATEXed: October 13, 2022 14:18

Intro. Algorithms & Models of Computation

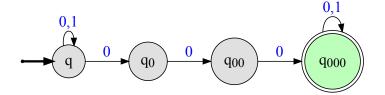
CS/ECE 374A, Fall 2022

4.1

NFA Introduction

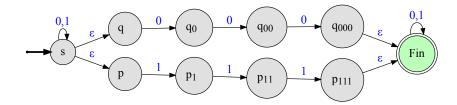
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.



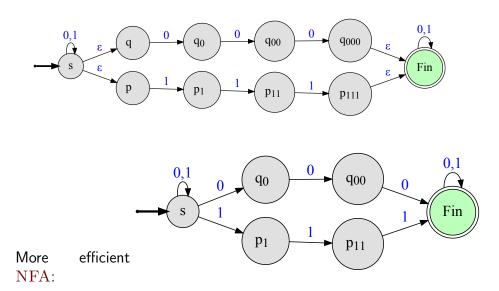
Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.



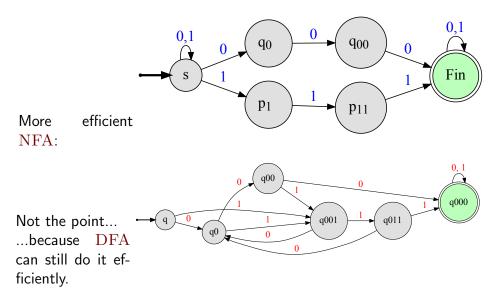
Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.

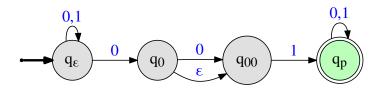


Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.



Non-deterministic Finite State Automata (NFAs)



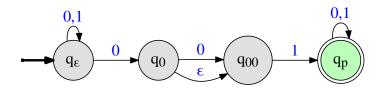
Differences from DFA

- From state **q** on same letter $\mathbf{a} \in \mathbf{\Sigma}$ multiple possible states
- No transitions from **q** on some letters
- \triangleright ε -transitions!

Questions:

- ► Is this a "real" machine?
- ► What does it do?

Non-deterministic Finite State Automata (NFAs)



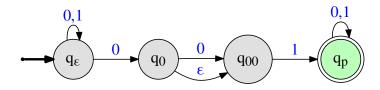
Differences from DFA

- ightharpoonup From state **q** on same letter **a** ightharpoonup multiple possible states
- ▶ No transitions from **q** on some letters
- \triangleright ε -transitions!

Questions:

- ► Is this a "real" machine?
- ► What does it do?

Non-deterministic Finite State Automata (NFAs)

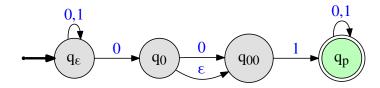


Differences from DFA

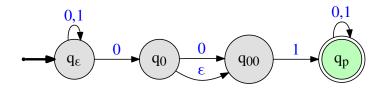
- ightharpoonup From state **q** on same letter **a** ightharpoonup multiple possible states
- ▶ No transitions from **q** on some letters
- \triangleright ε -transitions!

Questions:

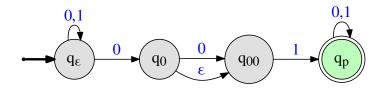
- ► Is this a "real" machine?
- ► What does it do?



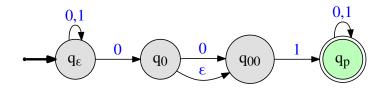
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- From q_{ε} on 0
- ightharpoonsep From \mathbf{q}_0 on ε
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{01}$
- From q_{00} on 00



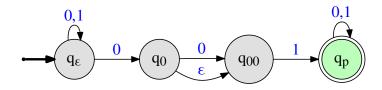
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- From q_{ε} on 0
- ightharpoonsep From \mathbf{q}_0 on ε
- From q_{ε} on 01
- From q_{00} on 00



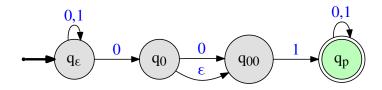
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{0}$
- ightharpoonsep From q_0 on ε
- From q_{ε} on 01
- From q_{00} on 00



- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{0}$
- From \mathbf{q}_0 on ε
- ightharpoonup From q_{ε} on 01
- From q_{00} on 00

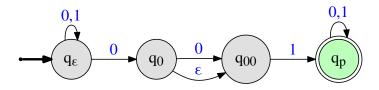


- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{0}$
- From \mathbf{q}_0 on ε
- From \mathbf{q}_{ε} on $\mathbf{01}$
- ightharpoonup From q_{00} on 00



- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{1}$
- ightharpoonup From \mathbf{q}_{ε} on $\mathbf{0}$
- From \mathbf{q}_0 on ε
- From \mathbf{q}_{ε} on $\mathbf{01}$
- From \mathbf{q}_{00} on $\mathbf{00}$

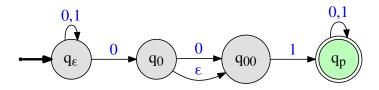
NFA acceptance: informal



Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

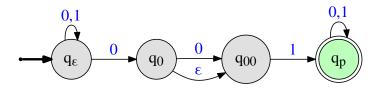
The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

NFA acceptance: informal

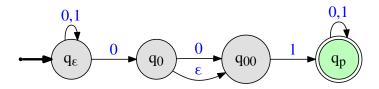


Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

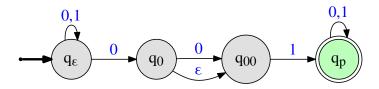
The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.



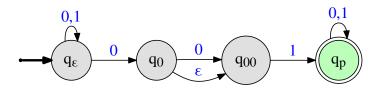
- Is 01 accepted?
- ► Is **001** accepted?
- ► Is **100** accepted?
- ► Are all strings in **1*01** accepted?
- ► What is the language accepted by **N**?



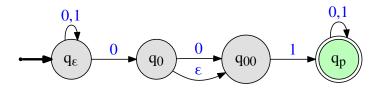
- Is 01 accepted?
- ▶ Is 001 accepted?
- ► Is **100** accepted?
- ► Are all strings in **1*01** accepted?
- ► What is the language accepted by **N**?



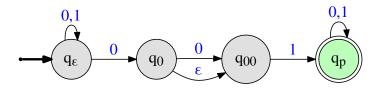
- Is 01 accepted?
- ▶ Is 001 accepted?
- ▶ Is **100** accepted?
- Are all strings in 1*01 accepted?
- ► What is the language accepted by **N**?



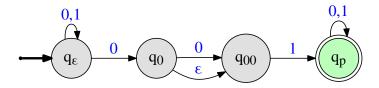
- Is 01 accepted?
- ▶ Is 001 accepted?
- ▶ Is **100** accepted?
- ► Are all strings in **1*****01** accepted?
- ► What is the language accepted by **N**?



- Is 01 accepted?
- ▶ Is 001 accepted?
- ▶ Is **100** accepted?
- ► Are all strings in **1*****01** accepted?
- ► What is the language accepted by **N**?

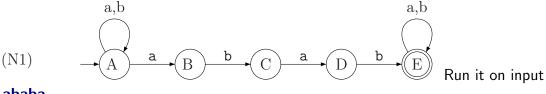


- Is 01 accepted?
- ▶ Is 001 accepted?
- ▶ Is **100** accepted?
- ► Are all strings in **1*****01** accepted?
- ► What is the language accepted by **N**?



- ► Is **01** accepted?
- Is 001 accepted?
- ▶ Is **100** accepted?
- ► Are all strings in **1*****01** accepted?
- ► What is the language accepted by **N**?

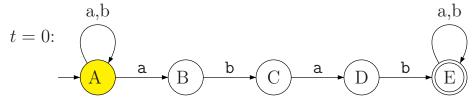
Example the first



ababa.

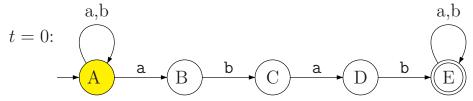
Idea: Keep track of the states where the NFA might be at any given time.

Example the first



Remaining input: ababa.

Example the first

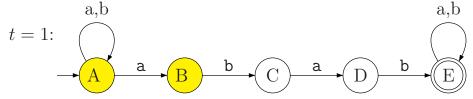


Remaining input: ababa.



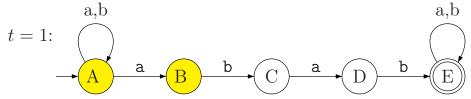
Remaining input: baba.

Example the first

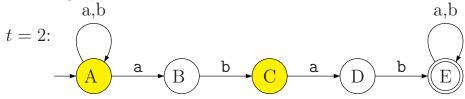


Remaining input: baba.

Example the first

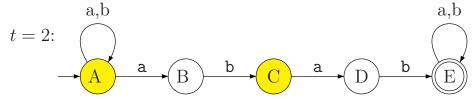


Remaining input: baba.



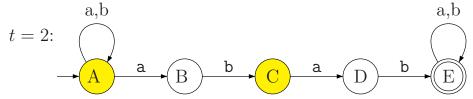
Remaining input: aba.

Example the first

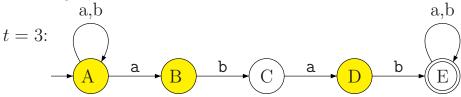


Remaining input: aba.

Example the first

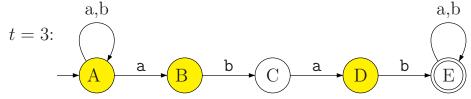


Remaining input: **aba**.



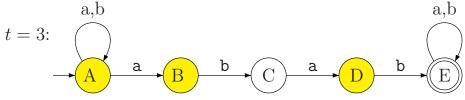
Remaining input: ba.

Example the first

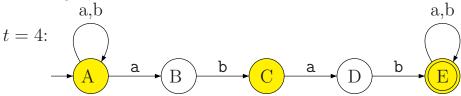


Remaining input: ba.

Example the first

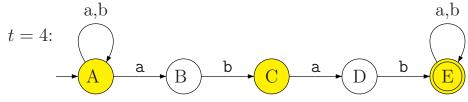


Remaining input: ba.



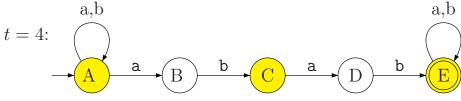
Remaining input: a.

Example the first

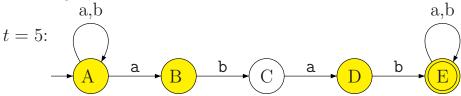


Remaining input: a.

Example the first

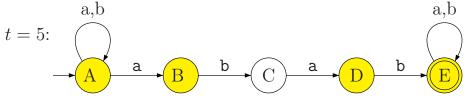


Remaining input: a.



Remaining input: ε .

Example the first



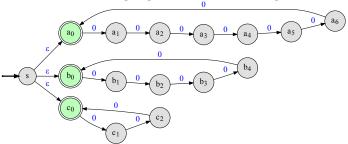
Remaining input: ε .

Accepts: **ababa**.

An exercise

For you to think about...

A. What is the language that the following NFA accepts?



B. What is the minimal number of states in a DFA that recognizes the same language?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

4.1.1

Formal definition of NFA

Reminder: Power set

Q: a set. Power set of **Q** is: $\mathcal{P}(\mathbf{Q}) = 2^{\mathbf{Q}} = \{ \mathbf{X} \mid \mathbf{X} \subseteq \mathbf{Q} \}$ is set of all subsets of **Q**.

Example 4.1.

$$Q = \{1, 2, 3, 4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$$

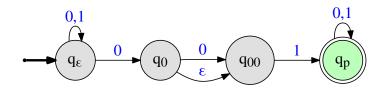
Formal Tuple Notation

Definition 4.2.

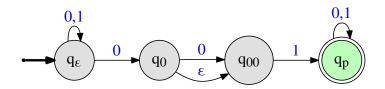
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- δ : Q × Σ ∪ {ε} → \mathcal{P} (Q) is the transition function (here \mathcal{P} (Q) is the power set of Q),
- $ightharpoonup s \in Q$ is the start state,
- $ightharpoonup A \subseteq Q$ is the set of accepting/final states.

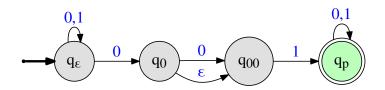
 $\delta(\mathbf{q}, \mathbf{a})$ for $\mathbf{a} \in \mathbf{\Sigma} \cup \{\varepsilon\}$ is a subset of \mathbf{Q} — a set of states.



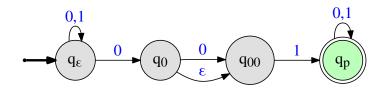
- ▶ $\Sigma = \{0, 1\}$
- ightharpoonup s = q $_{\varepsilon}$
- ${\color{red}\blacktriangleright} \ A = \{q_p\}$



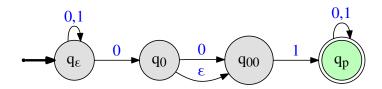
- $\blacktriangleright \ Q = \{q_{\epsilon},q_0,q_{00},q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- ightharpoonup s = q $_{\varepsilon}$
- $\blacktriangleright \ A = \{q_p\}$



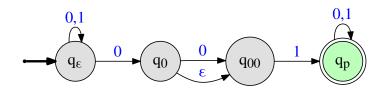
- $\blacktriangleright \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- ightharpoonup s = q $_{\varepsilon}$
- ${\color{red}\blacktriangleright}\ A=\{q_p\}$



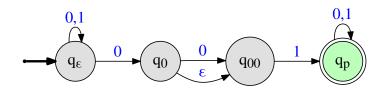
- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- ightharpoonup s = q $_{\varepsilon}$
- ${\color{red}\blacktriangleright} \ A = \{q_p\}$



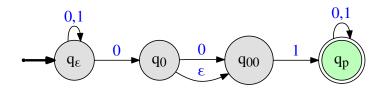
- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- \triangleright δ
- ightharpoonup s = q
- $\blacktriangleright \ A = \{q_p\}$



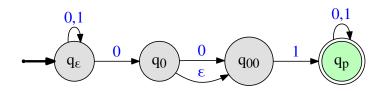
- $\blacktriangleright \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- \triangleright δ
- ightharpoonup s = q
- $\blacktriangleright \ A = \{q_p\}$



- $\blacktriangleright \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- \triangleright δ
- ightharpoonup s = q_e
- $\blacktriangle A = \{q_p\}$

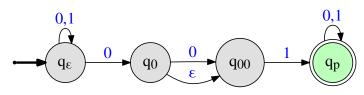


- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- \triangleright δ
- ightharpoonup s = q $_{\varepsilon}$
- $\blacktriangleright A = \{q_p\}$



- $\blacktriangleright \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- ▶ $\Sigma = \{0, 1\}$
- \triangleright δ
- ightharpoonup s = q $_{\varepsilon}$
- $\blacktriangleright \ A = \{q_p\}$

Transition function in detail...



$$egin{array}{ll} \delta({\mathsf q}_{arepsilon},arepsilon) = \{{\mathsf q}_{arepsilon}\} & \delta({\mathsf q}_0,arepsilon) = \{{\mathsf q}_0,{\mathsf q}_{00}\} \ \delta({\mathsf q}_{arepsilon},0) = \{{\mathsf q}_{arepsilon},{\mathsf q}_0\} & \delta({\mathsf q}_0,0) = \{{\mathsf q}_{00}\} \ \delta({\mathsf q}_0,1) = \{\} \ \delta({\mathsf q}_{00},arepsilon) = \{{\mathsf q}_{00}\} & \delta({\mathsf q}_{\mathfrak p},arepsilon) = \{{\mathsf q}_{\mathfrak p}\} \ \delta({\mathsf q}_{00},0) = \{\} & \delta({\mathsf q}_{\mathfrak p},0) = \{{\mathsf q}_{\mathfrak p}\} \ \delta({\mathsf q}_{\mathfrak p},1) = \{{\mathsf q}_{\mathfrak p}\} \end{array}$$

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

4.1.2

- 1. NFA N = $(Q, \Sigma, \delta, s, A)$
- 2. $\delta(\mathbf{q}, \mathbf{a})$: set of states that **N** can go to from **q** on reading $\mathbf{a} \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$
- 4. $\delta^*(\mathbf{q}, \mathbf{w})$: set of states reachable on input \mathbf{w} starting in state \mathbf{q} .

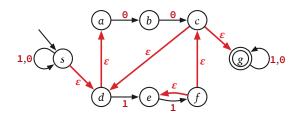
- 1. NFA N = $(Q, \Sigma, \delta, s, A)$
- 2. $\delta(\mathbf{q}, \mathbf{a})$: set of states that **N** can go to from **q** on reading $\mathbf{a} \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$
- 4. $\delta^*(\mathbf{q}, \mathbf{w})$: set of states reachable on input \mathbf{w} starting in state \mathbf{q} .

- 1. NFA N = $(Q, \Sigma, \delta, s, A)$
- 2. $\delta(\mathbf{q}, \mathbf{a})$: set of states that **N** can go to from **q** on reading $\mathbf{a} \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$
- 4. $\delta^*(\mathbf{q}, \mathbf{w})$: set of states reachable on input \mathbf{w} starting in state \mathbf{q} .

- 1. NFA N = $(Q, \Sigma, \delta, s, A)$
- 2. $\delta(\mathbf{q}, \mathbf{a})$: set of states that **N** can go to from **q** on reading $\mathbf{a} \in \Sigma \cup \{\varepsilon\}$.
- 3. Want transition function $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$
- 4. $\delta^*(\mathbf{q}, \mathbf{w})$: set of states reachable on input \mathbf{w} starting in state \mathbf{q} .

Definition 4.3.

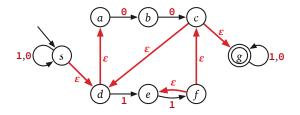
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.



For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

Definition 4.3.

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach(q) is the set of all states that q can reach using only ϵ -transitions.



Definition 4.4

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition 4.5.

Inductive definition of $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$:

- ightharpoonup if $\mathbf{w} = \varepsilon$, $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}(\mathbf{q})$
- ▶ if w = a where a ∈ Σ: $δ^*(q, a) = ε$ reach $\bigcup_{p ∈ ε$ reach $(q)} δ(p, a)$

▶ if
$$\mathbf{w} = \mathbf{a}\mathbf{x}$$
: $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition 4.5.

Inductive definition of $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$:

- ightharpoonup if $\mathbf{w} = \varepsilon$, $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}(\mathbf{q})$
- ▶ if w = a where a ∈ Σ: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition 4.5.

Inductive definition of $\delta^*: \mathbb{Q} \times \Sigma^* \to \mathcal{P}(\mathbb{Q})$:

- ▶ if w = a where a ∈ Σ: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

▶ if
$$\mathbf{w} = \mathbf{a}\mathbf{x}$$
: $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$

Translation...

$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$$

1.
$$R = \epsilon \operatorname{reach}(q) \implies \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

2. $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from **q** with the letter **a**.

3.
$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{r} \in \mathbf{N}} \delta^*(\mathbf{r}, \mathbf{x})\right)$$

Translation...

$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$$

1.
$$R = \epsilon \operatorname{reach}(q) \implies \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

2. $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from **q** with the letter **a**.

3.
$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{r} \in \mathbf{N}} \delta^*(\mathbf{r}, \mathbf{x})\right)$$

Translation...

$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$$

1.
$$R = \epsilon \operatorname{reach}(q) \implies \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

2. $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from **q** with the letter **a**.

3.
$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{r} \in \mathbf{N}} \delta^*(\mathbf{r}, \mathbf{x})\right)$$

Translation...

$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \left(\bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)\right)$$

1.
$$R = \epsilon \operatorname{reach}(q) \implies \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

2. $N = \bigcup_{p \in \mathbb{R}} \delta^*(p, a)$: All the states reachable from **q** with the letter **a**.

3.
$$\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{r} \in \mathbf{N}} \delta^*(\mathbf{r}, \mathbf{x})\right)$$

Formal definition of language accepted by N

Definition 4.6.

A string **w** is accepted by NFA **N** if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition 4.7.

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

Formal definition of language accepted by **N**

Definition 4.6.

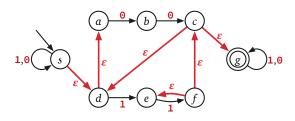
A string **w** is accepted by NFA **N** if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition 4.7.

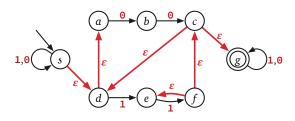
The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

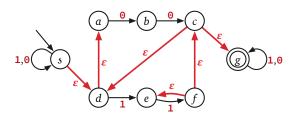
Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.



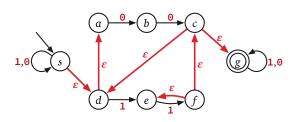
- $ightharpoonup \delta^*(s,\epsilon)$
- $ightharpoonup \delta^*(s,0)$
- $ightharpoonup \delta^*(c,0)$
- $ightharpoonup \delta^*(b,00)$



- $ightharpoonup \delta^*(s,\epsilon)$
- $ightharpoonup \delta^*(s,0)$
- $ightharpoonup \delta^*(c,0)$
- $ightharpoonup \delta^*(b,00)$



- $ightharpoonup \delta^*(s,\epsilon)$
- $ightharpoonup \delta^*(s,0)$
- $ightharpoonup \delta^*(c,0)$
- $ightharpoonup \delta^*(b,00)$



- $ightharpoonup \delta^*(s,\epsilon)$
- $ightharpoonup \delta^*(s,0)$
- $ightharpoonup \delta^*(c,0)$
- $ightharpoonup \delta^*(b,00)$

Another definition of computation

Definition 4.8.

 $q \xrightarrow{w}_N p$: State p of NFA N is <u>reachable</u> from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $ightharpoonup r_0 = q$,
- ▶ for each i, $\mathbf{r}_{i+1} \in \delta^*(\mathbf{r}_i, \mathbf{x}_{i+1})$,
- $ightharpoonup r_k = p$, and
- $ightharpoonup w = x_1x_2x_3\cdots x_k.$

Definition 4.9.

$$\delta_{N}^{*}(q,w) = \Big\{ p \in Q \ \Big| \ q \xrightarrow{w}_{N} p \Big\}.$$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- ► Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Intro. Algorithms & Models of Computation

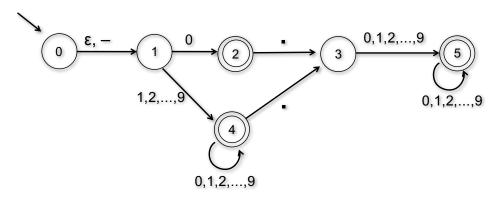
CS/ECE 374A, Fall 2022

4.2 Constructing NFAs

DFAs and NFAs

- ► Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- ► NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- ► Easy proofs of some closure properties

Strings that represent decimal numbers.



- {strings that contain CS374 as a substring}
- ► {strings that contain CS374 or CS473 as a substring}
- ► {strings that contain CS374 and CS473 as substrings}

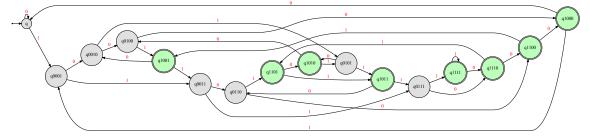
- {strings that contain CS374 as a substring}
- ► {strings that contain CS374 or CS473 as a substring}
- ► {strings that contain CS374 and CS473 as substrings}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- ► {strings that contain CS374 and CS473 as substrings}

 $\mathbf{L_k} = \{ \text{bitstrings that have a 1 } \mathbf{k} \text{ positions from the end} \}$

DFA for same task is much bigger...

 $L_4 = \{$ bitstrings that have a 1 in fourth position from the end $\}$



A simple transformation

Theorem 4.1.

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- ightharpoonup N' has single final state f that has no outgoing transitions
- ► The start state **s** of **N** is different from **f**

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

4.3 Closure Properties of NFAs

Closure properties of NFAs

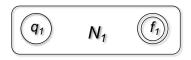
Are the class of languages accepted by NFAs closed under the following operations?

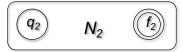
- union
- intersection
- concatenation
- ► Kleene star
- complement

Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

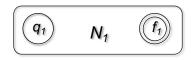


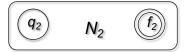


Closure under union

Theorem 4.1.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.





Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

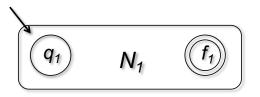
Closure under concatenation

Theorem 4.2.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

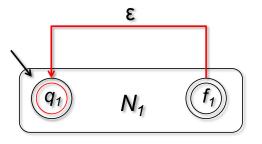
Theorem 4.3.

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Theorem 4.4.

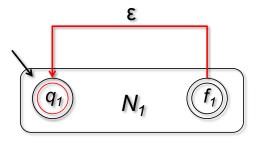
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Does not work! Why?

Theorem 4.4.

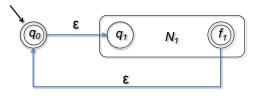
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Does not work! Why?

Theorem 4.5.

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

4.4

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset \epsilon denotes \{\epsilon\} a denote \{a\} r_1+r_2 denotes R_1\cup R_2 r_1r_2 denotes R_1R_2 r^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Theorem 4.1.

For every regular language L there is an NFA N such that L = L(N).

Proof strategy:

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- ► Induction on length of r

Base cases: \emptyset , $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

Inductive cases:

▶ r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)

- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $\mathbf{r} = (\mathbf{r}_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- ▶ r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $\mathbf{r} = (\mathbf{r}_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- ▶ $\mathbf{r}_1, \mathbf{r}_2$ regular expressions and $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. By induction there are NFAs $\mathbf{N}_1, \mathbf{N}_2$ s.t $\mathbf{L}(\mathbf{N}_1) = \mathbf{L}(\mathbf{r}_1)$ and $\mathbf{L}(\mathbf{N}_2) = \mathbf{L}(\mathbf{r}_2)$. We have already seen that there is NFA N s.t $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{N}_1) \cup \mathbf{L}(\mathbf{N}_2)$, hence $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{r})$
- $ightharpoonup r = r_1 \circ r_2$. Use closure of NFA languages under concatenation
- $\mathbf{r} = (\mathbf{r}_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- ▶ $\mathbf{r}_1, \mathbf{r}_2$ regular expressions and $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. By induction there are NFAs $\mathbf{N}_1, \mathbf{N}_2$ s.t $\mathbf{L}(\mathbf{N}_1) = \mathbf{L}(\mathbf{r}_1)$ and $\mathbf{L}(\mathbf{N}_2) = \mathbf{L}(\mathbf{r}_2)$. We have already seen that there is NFA N s.t $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{N}_1) \cup \mathbf{L}(\mathbf{N}_2)$, hence $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{r})$
- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $\mathbf{r} = (\mathbf{r}_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- ► Induction on length of r

- ▶ $\mathbf{r}_1, \mathbf{r}_2$ regular expressions and $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. By induction there are NFAs $\mathbf{N}_1, \mathbf{N}_2$ s.t $\mathbf{L}(\mathbf{N}_1) = \mathbf{L}(\mathbf{r}_1)$ and $\mathbf{L}(\mathbf{N}_2) = \mathbf{L}(\mathbf{r}_2)$. We have already seen that there is NFA N s.t $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{N}_1) \cup \mathbf{L}(\mathbf{N}_2)$, hence $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{r})$
- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $ightharpoonup r = (r_1)^*$. Use closure of NFA languages under Kleene star

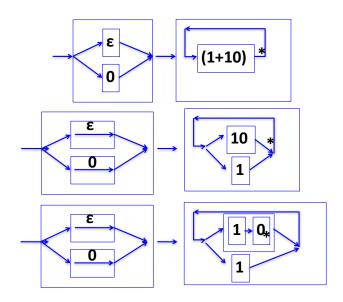
- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- ▶ $\mathbf{r}_1, \mathbf{r}_2$ regular expressions and $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. By induction there are NFAs $\mathbf{N}_1, \mathbf{N}_2$ s.t $\mathbf{L}(\mathbf{N}_1) = \mathbf{L}(\mathbf{r}_1)$ and $\mathbf{L}(\mathbf{N}_2) = \mathbf{L}(\mathbf{r}_2)$. We have already seen that there is NFA N s.t $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{N}_1) \cup \mathbf{L}(\mathbf{N}_2)$, hence $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{r})$
- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $ightharpoonup r = (r_1)^*$. Use closure of NFA languages under Kleene star

- For every regular expression \mathbf{r} show that there is a NFA \mathbf{N} such that $\mathbf{L}(\mathbf{r}) = \mathbf{L}(\mathbf{N})$
- ► Induction on length of r

- ▶ $\mathbf{r}_1, \mathbf{r}_2$ regular expressions and $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$. By induction there are NFAs $\mathbf{N}_1, \mathbf{N}_2$ s.t $\mathbf{L}(\mathbf{N}_1) = \mathbf{L}(\mathbf{r}_1)$ and $\mathbf{L}(\mathbf{N}_2) = \mathbf{L}(\mathbf{r}_2)$. We have already seen that there is NFA N s.t $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{N}_1) \cup \mathbf{L}(\mathbf{N}_2)$, hence $\mathbf{L}(\mathbf{N}) = \mathbf{L}(\mathbf{r})$
- $ightharpoonup r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $ightharpoonup r = (r_1)^*$. Use closure of NFA languages under Kleene star





Final NFA simplified slightly to reduce states

