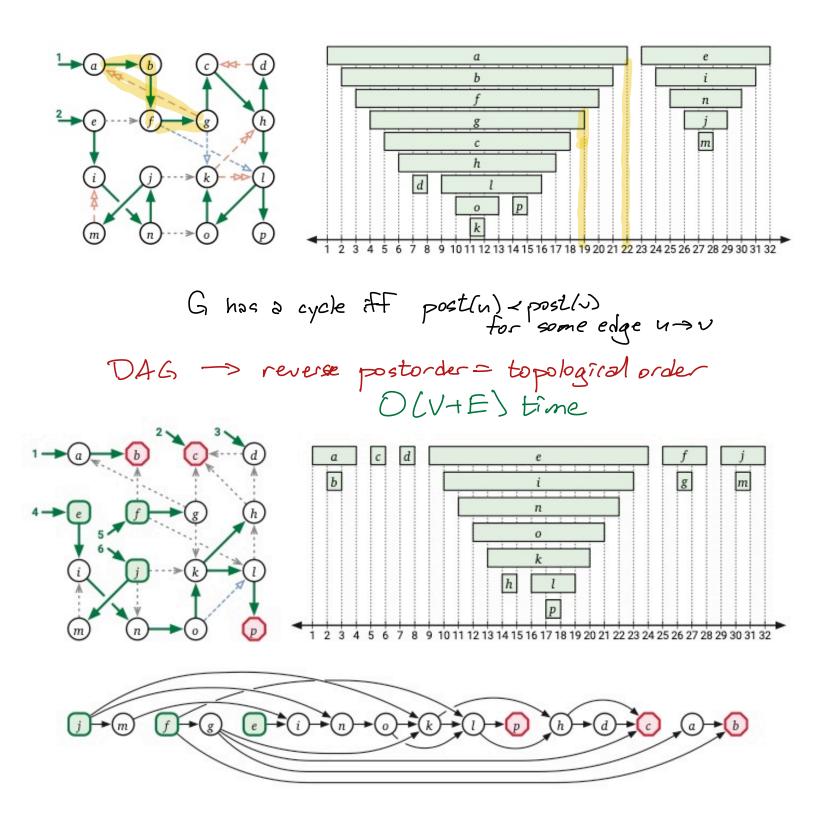
HW9 out - due next Tuesday Midterm 2 in two weeks Depth-First search

preorder — pushes postorder — pops

GPS 9 out - due Monday



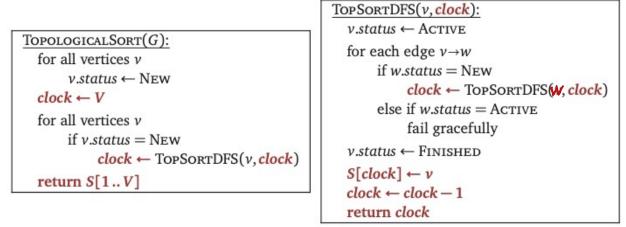
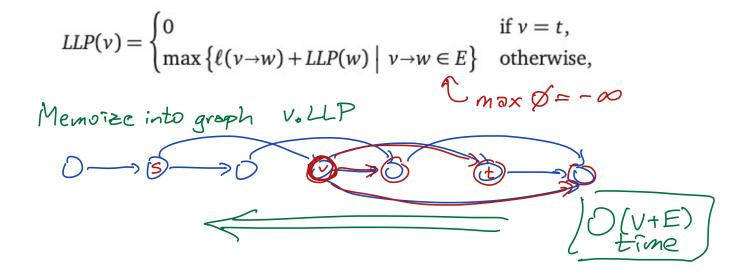
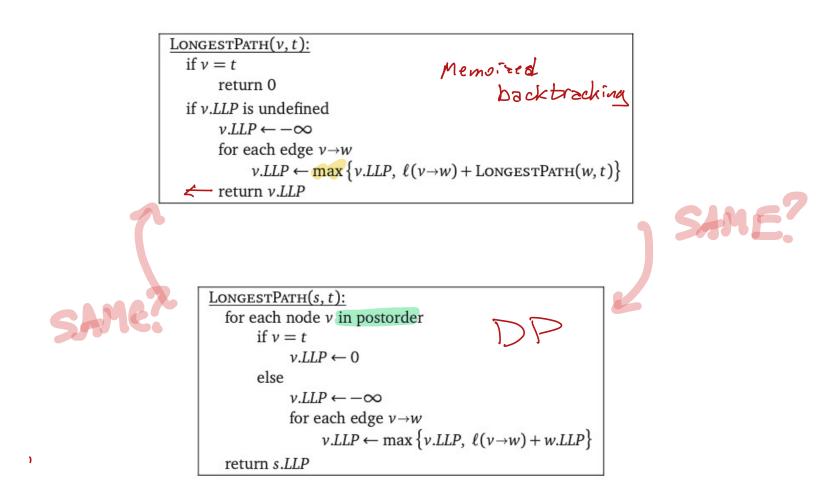


Figure 6.9. Explicit topological sort

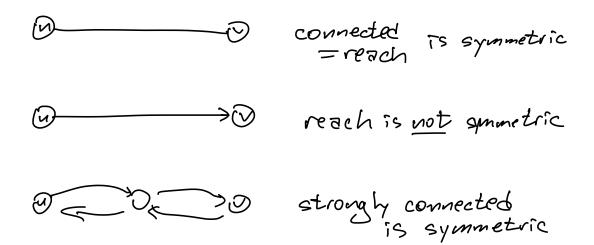




 $\frac{\text{PostProcessDag}(G):}{\text{for all vertices } \nu \text{ in postorder}}$ $\frac{\text{Process}(\nu)}{\text{Process}(\nu)}$

PostProcessDag(G): for all vertices v unmark v for all vertices v if v is unmarked PostProcessDagDFS(s) $\frac{\text{PostProcessDagDFS}(v):}{\text{mark } v}$ for each edge $v \rightarrow w$ if w is unmarked
PostProcessDagDFS(w)
Process(v)

Define dag G=(V,E) V= E0---n] E= Ei -j | Isword(A[tel-j])] Build using D(n²) colles to Isword) Is there a path from O to n in G? WFS D(V+E) = D(n²) time



Ford's generic SP algorithm
Every node
$$\sim$$
 stores
 $dist() - estimate of sh. path distance
from s to \vee
 $pred() - parent of \vee on shortest(?)
 $path from s to \vee
 $\frac{INITSSSP(s):}{dist(s) \leftarrow 0}$
 $pred(s) \leftarrow NULL$
for all vertices $\nu \neq s$
 $dist(\nu) \leftarrow \infty$
 $pred(\nu) \leftarrow NULL$
 $Mark TSSP(s) = 0$
 $Mark TSSSP(s) = 0$
 $mar$$$$

dist(n) + l(n - v) < dist(v)

Relax $(u \rightarrow v)$:	
$dist(v) \leftarrow dist(u) + w(u \rightarrow v)$	
$pred(v) \leftarrow u$	

FORDSSSP(s): INITSSSP(s) while there is at least one tense edge RELAX any tense edge