
Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

The product of mental labor — science — always stands far below its value, because the labor-
time necessary to reproduce it has no relation at all to the labor-time required for its original
production. For example, a schoolboy can learn the binomial theorem in an hour.

— Karl Marx, Theories of Surplus Value (1863)

Imagine a piano keyboard, eh, 88 keys, only 88 and yet, and yet, hundreds of new melodies, new
tunes, new harmonies are being composed upon hundreds of different keyboards every day in
Dorset alone. Our language, tiger, our language: Hundreds of thousands of available words,
frillions of legitimate new ideas, so that I can say the following sentence and be utterly sure that
nobody has ever said it before in the history of human communication: “Hold the newsreader’s
nose squarely, waiter, or friendly milk will countermand my trousers.” Perfectly ordinary
words, but never before put in that precise order. A unique child delivered of a unique mother.

— Stephen Fry, A Bit of Fry and Laurie, Series 1, Episode 3 (1989)

5 Context-Free Languages and Grammars

5.1 Definitions

Intuitively, a language is regular if it can be built from individual strings by concatenation, union,
and repetition. In this note, we consider a wider class of context-free languages, which are
languages that can be built from individual strings by concatenation, union, and recursion.

Formally, a language is context-free if and only if it has a certain type of recursive description
known as a context-free grammar, which is a structure with the following components:

• A finite set Σ, whose elements are called symbols or terminals.

• A finite set Γ disjoint from Σ, whose elements are called non-terminals.

• A finite set R of production rules of the form A→ w, where A∈ Γ is a non-terminal and
w ∈ (Σ∪ Γ )∗ is a string of symbols and variables.

• A starting non-terminal, typically denoted S.

For example, the following eight production rules describe a context free grammar with terminals
Σ= {0,1} and non-terminals Γ = {S, A, B, C}:

S→ A A→ 0A B→ B1 C → ϵ
S→ B A→ 0C B→ C1 C → 0C1

Normally we write grammars more compactly by combining the right sides of all rules for
each non-terminal into one list, with alternatives separated by vertical bars.1 For example, the
previous grammar can be written more compactly as follows:

S→ A | B
A→ 0A | 0C

B→ B1 | C1
C → ϵ | 0C1

1Yes, this means we now have three symbols ∪, +, and | with exactly the same meaning. Sigh.

© Copyright 2021 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/


Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

For the rest of this lecture, I will almost always use the following notational conventions.

• Monospaced digits (0, 1, 2, . . . ), and symbols (⋄, $, #, •, . . . ) are explicit terminals.

• Early lower-case Latin letters (a, b, c, . . . ) represent unknown or arbitrary terminals in Σ.

• Early upper-case Latin letters (A, B, C , . . . ) and the letter S represent non-terminals in Γ .

• Late lower-case Latin letters (. . . , w, x , y, z) represent strings in (Σ∪ Γ )∗, whose characters
could be either terminals or non-terminals.

5.2 Derivations and Languages

We can apply a production rule to a string in (Σ∪Γ )∗ by replacing any instance of the non-terminal
on the left of the rule with the string on the right. More formally, for any strings x , y, z ∈ (Σ∪ Γ )∗

and any non-terminal A ∈ Γ , applying the production rule A→ y to the string xAz yields the
string x yz. We use the notation x Az⇝ x yz to describe this application. For example, we can
apply the rule C → 0C1 to the string 00C1BAC0 in two different ways:

00C 1BAC0⇝ 000C11BAC0 00C1BAC 0⇝ 00C1BA0C10

More generally, for any strings x , z ∈ (Σ∪ Γ )∗, we say that z derives from x , written x ⇝∗ z,
if we can transform x into z by applying a finite sequence of production rules (called a derivation),
or more formally, if either

• x = z, or

• x ⇝ y and y ⇝∗ z for some string y ∈ (Σ∪ Γ )∗.

Straightforward definition-chasing implies that, for any strings w, x , y, z ∈ (Σ∪ Γ )∗, if x ⇝∗ y,
then wxz⇝∗ wyz. For example, for our first example grammar, the following derivation implies
S⇝∗ 000011:

S⇝ A⇝ 0A⇝ 00C ⇝ 000C1⇝ 0000C11⇝ 000011

The language L(w ) of any string w ∈ (Σ∪Γ )∗ is the set of all strings in Σ∗ that derive from w:

L(w) := {x ∈ Σ∗ | w⇝∗ x} .

The language generated by a context-free grammar G, denoted L(G), is the language of its
starting non-terminal. Finally, a language is context-free if it is generated by some context-free
grammar.

Motivation and Intuition

Context-free grammars were first formalized in the mid-1950s by Noam Chomsky as a simple
model of natural human languages. In this context, the symbols are words, and the strings in the
languages are sentences. For example, the following grammar describes a tiny subset of English
sentences. (Here I’m diverging from the usual notation conventions. Strings in 〈angle brackets〉

2



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

are non-terminals, and regular strings are terminals.)

〈sentence〉 → 〈noun phrase〉〈verb phrase〉〈noun phrase〉
〈noun phrase〉 → 〈adjective phrase〉〈noun〉
〈adj. phrase〉 → 〈article〉 | 〈possessive〉 | 〈adjective phrase〉〈adjective〉
〈verb phrase〉 → 〈verb〉 | 〈adverb〉〈verb phrase〉

〈noun〉 → dog | trousers | daughter | nose | homework | time lord | pony | · · ·
〈article〉 → the | a | some | every | that | · · ·

〈possessive〉 → 〈noun phrase〉’s |my | your | his | her | · · ·
〈adjective〉 → friendly | furious |moist | green | severed | timey-wimey | little | · · ·
〈verb〉 → ate | found | wrote | killed |mangled | saved | invented | broke | · · ·

〈adverb〉 → squarely | incompetently | barely | sort of | awkwardly | totally | · · ·

But it is also helpful to think of context-free grammars in terms of code. A context-free
grammar is a program composed of several functions. Each non-terminal is the name of a
function that outputs a single string. The starting non-terminal is the name of the top-level
function (equivalent to main in a C program). The production rules for each nonterminal spell out
options for the corresponding function’s behavior; non-terminals on the right side of a production
rule are function calls. For instance, our example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0C1

is equivalent to the following pseudocode, where Start is the main program:

Start( ):
if

Alpha( )
else

Bravo( )

Alpha( ):
if

print(0)
Alpha( )

else
print(0)
Charlie( )

Bravo( ):
if

Bravo( )
print(1)

else
Charlie( )
print(1)

Charlie( ):
if

return
else

print(0)
Charlie( )
print(1)

Each of the black bars ( ) hides a condition that you have no control over, and different
occurrences of these conditions are independent from each other. (A good example is “a new
coin flip comes up heads”.) Depending on how these conditions evaluate, calling Start( ) will
print different strings. The language of the grammar is the set of all strings that a single call to
Start( ) could possibly print.

5.3 Parse Trees

It is often useful to visualize derivations of strings in L(G) using a parse tree. The parse tree for
a string w ∈ L(G) is a rooted ordered tree where

• Each leaf is labeled with a terminal or the empty string ϵ. Concatenating these in order
from left to right yields the string w.

• Each internal node is labeled with a non-terminal. In particular, the root is labeled with
the start non-terminal S.

3



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• For each internal node v, there is a production rule A→ω where A is the label of v and
the symbols in ω are the labels of the children of v in order from left to right.

In other words, the production rules of the grammar describe template trees that can be
assembled into larger parse trees. For example, the simple grammar on the previous page has
the following templates, one for each production rule:

S

A

S

B

A

A0

A

C0

B

1B

B

1C

C

ϵ

C

1C0

The same grammar gives us the following parse tree for the string 000011:

S

A

A

C

1C

1C

ϵ

0

0

0

0

Our more complicated “English” grammar gives us parse trees like the following:

〈sentence〉

〈noun phrase〉

〈noun〉

trousers

〈adj. phrase〉

〈posessive〉

’s〈noun phrase〉

〈noun〉

dog

〈adj. phrase〉

〈possessive〉

my

〈verb phrase〉

〈verb phrase〉

〈verb〉

mangled

〈adverb〉

barely

〈noun phrase〉

〈noun〉

time lord

〈adj. phrase〉

〈adjective〉

green

〈adj. phrase〉

〈adjective〉

furious

〈adj. phrase〉

〈posessive〉

your

Any parse tree that contains at least one node with more than one non-terminal child corresponds
to several different derivations. For example, when deriving an “English” sentence, we have a
choice of whether to expand the first 〈noun phrase〉 (“your furious green time lord”) before or
after the second (“my dog’s trousers”).

A string w is ambiguous with respect to a grammar if there is more than one parse tree for w,
and a grammar G is ambiguous is some string is ambiguous with respect to G. Neither of the
previous example grammars is ambiguous. However, the grammar S → 1 | S+S is ambiguous,
because the string 1+1+1+1 has five different parse trees:

S

S

1

+S

S

1

+S

S

1

+S

1

S

S

1

+S

S

S

1

+S

1

+S

1

S

S

S

1

+S

1

+S

S

1

+S

1

S

S

S

1

+S

S

1

+S

1

+S

1

S

S

S

S

1

+S

1

+S

1

+S

1

4



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

A context-free language L is inherently ambiguous if every context-free grammar that
generates L is ambiguous. The language generated by the previous grammar (the regular
language (1+)∗1) is not inherently ambiguous, because the unambiguous grammar S→ 1 | 1+S
generates the same language.

5.4 From Grammar to Language

Let’s figure out the language generated by our first example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0C1.

Since the production rules for non-terminal C do not refer to any other non-terminal, let’s begin
by figuring out L(C). After playing around with the smaller grammar C → ϵ | 0C1 for a few
seconds, you can probably guess that its language is {ϵ,01,0011,000111, . . .}, that is, the set all
of strings of the form 0n1n for some integer n. For example, we can derive the string 00001111
from the start non-terminal S using the following derivation:

C ⇝ 0C1⇝ 00C11⇝ 000C111⇝ 0000C1111⇝ 0000ϵ1111= 00001111

The same derivation can be viewed as the following parse tree:

C

1C

1C

1C

1C

ϵ

0

0

0

0

In fact, it is not hard to prove by induction that L(C) = {0n1n | n≥ 0} as follows. As usual when
we prove that two sets X and Y are equal, the proof has two stages: one stage to prove X ⊆ Y ,
the other to prove Y ⊆ X .

Lemma 5.1. C ⇝∗ 0n1n for every non-negative integer n.

Proof: Fix an arbitrary non-negative integer n. Assume that C ⇝∗ 0k1k for every non-negative
integer k < n. There are two cases to consider.

• If n= 0, then 0n1n = ϵ. The rule C → ϵ implies that C ⇝ ϵ and therefore C ⇝∗ ϵ.

• Suppose n > 0. The inductive hypothesis implies that C ⇝∗ 0n−11n−1. Thus, the rule
C → 0C1 implies that C ⇝ 0C1⇝∗ 0(0n−11n−1)1= 0n1n.

In both cases, we conclude that that C ⇝∗ 0n1n, as claimed. □

Lemma 5.2. For every string w ∈ L(C), we have w= 0n1n for some non-negative integer n.

Proof: Fix an arbitrary string w ∈ L(C). Assume that for any string x ∈ L(C) such that |x |< |w|,
we have x = 0k1k for some non-negative integer k. There are two cases to consider, one for each
production rule.

5



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• If w= ϵ, then w= 0010.

• Otherwise, w= 0x1 for some string x ∈ L(C). Because |x |= |w| − 2< |w|, the inductive
hypothesis implies that x = 0k1k for some integer k. Then we have w= 0k+11k+1.

In both cases, we conclude that w= 0n1n for some non-negative integer n, as claimed. □

The first proof uses induction on strings, following the boilerplate proposed in the very first
lecture; in particular, the case analysis mirrors the recursive definition of “string”. The second
proof uses structural induction on the parse tree of the string 0n1n; the case analysis mirrors
the recursive definition of the language of S, as described by the production rules. In both
proofs, as in every proof by induction, the inductive hypothesis is “Assume there is no smaller
counterexample.”

Similar analysis implies that L(A) = {0m1n | m > n} and L(B) = {0m1n | m < n}, and
therefore L(S) = {0m1n | m ̸= n}.

5.4.1 Careful With Those Epsilons

There is an important subtlety in the proof of Lemma 5.2. The proof is written as induction on
the length of the string w; unfortunately, this induction pattern does not work for all context-free
grammars. Consider the following ambiguous grammar

S→ ϵ | SS | 0S1 | 1S0.

A bit of experimentation should convince you that L(S) is the language of all binary strings with
the same number of 0s and 1s. We cannot use the string-induction boilerplate for this grammar,
because there are arbitrarily long2 derivations of the form

S⇝ SS⇝ S⇝ SS⇝ S⇝ SS⇝ SS⇝ · · ·⇝ w,

which alternately apply the productions S→ SS and S→ ϵ. Specifically, even if we knew that
our arbitrary string w can be written as x y for some strings x , y ∈ L(S), we cannot guarantee
that |x |< |w| and |y|< |w|, to we cannot apply the standard string-induction hypothesis.

However, we can still argue inductively about this grammar, by considering a minimum-length
derivation of w, and basing the case analysis on the first production in this derivation. Here’s
an example of this induction boilerplate in action, with the modified boilerplate language
highlighted.

Lemma 5.3. For every string w ∈ L(S), we have #(0, w) = #(1, w).

Proof: Let w be an arbitrary string in L(S). Fix an minimum-length derivation of w.
Assume that for any string x ∈ L(S) that is shorter than w, we have x = 0k1k for some

non-negative integer k. There are four cases to consider, depending on the first production in our
fixed derivation.

• Suppose the first production is S→ ϵ. Then w= ϵ and therefore #(0, w) = #(1, w) = 0 by
definition.

2but not infinite; derivations are finite by definition!

6



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• Suppose the first production is S→ SS. Then w= x y for some strings x , y ∈ L(S). Both
x and y must be non-empty; otherwise, we could shorten our derivation of w. Thus,
both x and y are shorter than w. The inductive hypothesis implies #(0, x) = #(1, x) and
#(0, y) = #(1, y), so #(0, w) = #(0, x) +#(0, y) = #(1, x) +#(1, y) = #(1, w).

• Suppose the first production is S→ 0S1. Then w = 0x1 for some string x ∈ L(S). The
inductive hypothesis implies #(0, x) = #(1, x) so #(0, w) = #(0, x) + 1 = #(1, x) + 1 =
#(1, w).

• Finally, suppose the first production is S→ 1S0. Then w = 1x0 for some string x ∈ L(S).
The inductive hypothesis implies #(0, x) = #(1, x) so #(0, w) = #(0, x)+1= #(1, w)+1=
#(1, w).

In all cases, we conclude that #(0, w) = #(1, w), as claimed. □

Another (more traditional) way to handle this issue is to fix an arbitrary derivation, and then
induct on the length of the derivation, rather than the length of the string itself. The case analysis
is still based on the first production in the chosen derivation.

In fact, this subtlety only matters for grammars that either contain a nullable non-terminal A
such that A⇝∗ ϵ or equivalent nonterminals A and B such that A⇝∗ B and B⇝∗ A. We describe
algorithms to identify these pathologies and remove them from the grammar (without changing
its language) in Section 5.10 below.

5.4.2 Mutual Induction

Another pitfall in induction proofs for context-free languages is that non-terminals may invoke
each other. Consider, for example, the grammar

S→ 0A1 | ϵ A→ 1S0 | ϵ

Because each non-terminal appears on the right side of a production rule for the other, we must
argue about L(S) and L(A) simultaneously.

Lemma 5.4. L(S) = (01)∗.

Proof: We actually prove simultaneously that L(S) = (01)∗ and L(A) = (10)∗.
First, we claim that for any non-negative integer n, we have (01)n ∈ L(S) and (10)n ∈ L(A).

Let n be an arbitrary non-negative integer, and assume, for all non-negative integers m< n, that
(01)m ∈ L(S) and (10)m ∈ L(A). There are two cases to consider.

• If n = 0, the production rules S → ϵ and A→ ϵ immediately imply S ⇝ ϵ = (01)n and
A⇝ ϵ = (10)n.

• Suppose n> 0. We easily observe that (01)n = 0(10)n−11, so the production rule S→ 0A1
and inductive hypothesis imply S⇝ 0A1⇝∗ (01)n. Symmetrically, (10)n = 1(01)n−10, so
the production rule A→ 1S0 and the inductive hypothesis implies A⇝ 1S0⇝∗ (10)n.

Next we claim that for every string w ∈ L(S), we have w = (01)n for some non-negative
integer n, and for every string w ∈ L(A), we have w = (10)n for some non-negative integer n.
The proof requires two stages.

7



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• Let w be an arbitrary string in L(S), and assume for all x ∈ L(A) such that |x | < |w| that
x = (10)n for some non-negative integer n. There are two cases to consider.

– If w= ϵ, then w= (01)0.

– Suppose w = 0x1 for some string x ∈ L(A). The inductive hypothesis implies
x = (10)n for some non-negative integer n. It follows that w= 0(10)n1= (01)n+1.

• Let w be an arbitrary string in L(A), and assume for all x ∈ L(S) such that |x | < |w| that
x = (01)n for some non-negative integer n. There are two cases to consider.

– If w= ϵ, then w= (10)0.

– Suppose w = 1x0 for some string x ∈ L(S). The inductive hypothesis implies
x = (01)n for some non-negative integer n. It follows that w= 1(01)n0= (10)n+1.

Together these two claims imply L(S) = (01)∗ and L(A) = (10)∗, as required. □

5.5 More Examples

Here are some more examples of context-free languages and grammars that generate them,
along with brief sketches of correctness proofs.

• Palindromes in {0,1}∗:

S→ 0S0 | 1S1 | 0 | 1 | ϵ

This grammar is a straightforward translation of the recursive definition of palindrome.

• Strings in (0+ 1)∗ that are not palindromes.

S→ 0S0 | 1S1 | 0Z1 | 1Z0

Z → ϵ | 0Z | 1Z

A string w is a non-palindrome if and only if w= x0z1xR or w= x1z0xR for some (possibly
empty) strings x and y .

• Strings in {0,1}∗ with the same number of 0s and 1s:

S→ 0S1 | 1S0 | SS | ϵ

A non-empty string w has the same number of 0s and 1s if and only one of the following
conditions holds:

– We can write w= x y for some non-empty strings x and y such that #(0, x) = #(1, x)
and #(0, y) = #(1, y).

– #(0, x)> #(1, x) for every non-empty proper prefix x of w. In this case, w= 0z1 for
some string z with #(0, z) = #(1, z).

– #(0, x)< #(1, x) for every non-empty proper prefix x of w. In this case, w= 1z0 for
some string z with #(0, z) = #(1, z).

8



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• Strings in {0,1}∗ with the same number of 0s and 1s, again:

S→ 0S1S | 1S0S | ϵ

Let w be any non-empty string such that #(0, w) = #(1, w), let x be the shortest non-empty
prefix of w such that #(0, x) = #(1, x), and let y be the complementary suffix of w, so
w = x y. It is not hard to prove that x begins and ends with different symbols, so either
w= 0z1y or w= 1z0y , where #(0, y) = #(1, y) and #(0, z) = #(1, z).

• Strings in {0,1}∗ in which the number of 0s is greater than or equal to the number of 1s:

S→ 0S1 | 0S | 1S0 | S0 | SS | ϵ S→ 0S1S | 0SS | 1S0S | S0S | ϵ

We have two different grammars, each constructed from a grammar for strings with equal
0s and 1s by either dropping the 1 or keeping the 1 from the right side of each production
rule containing a 1. For example, we split the production rule S→ 0S1 in the first grammar
into two production rules S→ 0S1 and S→ 0S.

If we add the trivial production S → 0 to the first grammar, we can remove two
redundant productions to get the simpler grammar

S→ 0S1 | 1S0 | SS | 0 | ϵ

• Strings in {0,1}∗ with different numbers of 0s and 1s:

S→ O | I (different)
O→ E0O | E0E (more 0s)
I → E1I | E1E (more 1s)
E→ 0E1E | 1E0E | ϵ (equal)

We can argue correctness by considering each non-terminal in turn, in reverse order.

– E generates all strings with the same number of 0s and 1s, as in the previous example.

– I generates all strings with more 1s than 0s. Any such string can be decomposed into
its longest prefix with the same number of 0s and 1s (E), followed by a 0, followed by
a suffix with at least as many 0s as 1s (I or E).

– Symmetrically, O generates all strings with more 0s than 1s.

– Finally, S generates all strings with different numbers of 0s and 1s. Any such string
either has more 0s (O) or more 1s (I)

• Balanced strings of parentheses:

S→ (S) | SS | ϵ or S→ (S)S | ϵ

Here we have two grammars for the same language. The first one uses simpler productions,
and is a bit closer to the natural recursive definition. However, the first grammar is
ambiguous — consider the string ()()() — while the second grammar is not. The second
grammar decomposes any balanced string of parentheses into its shortest non-empty
balanced prefix, which must start with ( and end with ), and the remaining suffix, which
must be balanced.

9



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• Unbalanced strings of parentheses—the complement of the previous language:

S→ L | RX (unbalanced)
L→ E(L | E(E (more left parens)
R→ E)R | E)E (more right parens)
E→ ϵ | (E)E | )E(E (equal left and right)
X → ϵ | (X | )X (anything)

A string w of parens is balanced if and only if both (a) w has the same number of left and
right parens and (b) no prefix of w has more right parens than left parens. (Proving this
fact is a good homework exercise.) Thus, a string w of parens is unbalanced if and only if
either w has more left parens than right parens or some prefix of w has more right parens
than left parens.

• Arithmetic expressions, possibly with redundant parentheses, over the variables X and Y:

E→ E+T | T (expressions)
T → T×F | F (terms)
F → (E) | X | Y (factors)

Every Eexpression is a sum of Terms, every Term is a product of Factors, and every Factor
is either a variable or a parenthesized Expression.

• Regular expressions over the alphabet {0,1} without redundant parentheses

S→ T | T+S (Regular expressions)
T → F | F T (Terms = summable expressions)
F → Ø |W | (T+S) | X* | (Y)* (Factors = concatenable expressions)
X → Ø | 3| 0 | 1 (Directly starrable expressions)
Y → T+S | F•T | X* | (Y)* | Z Z (Starrable expressions needing parens)

W → 3| Z (Words = strings)
Z → 0 | 1 | Z Z (Non-empty strings)

Every regular expression is a sum of terms; every term is a concatenation of factors. Every
factor is either the empty-set symbol, a string, a nontrivial sum of terms in parens, or a
starred expression. The expressions Ø*, 3*, 0*, and 1* require no parentheses; otherwise,
the starred subexpression is either a nontrivial sum of terms, a nontrivial concatenation of
factors, a starred expression, or a string of length 2 or more.

The “epsilon” symbol 3in the production rules for W and Z does not represent the
empty string per se, but rather an actual symbol that might appear in a regular expression.
The empty string is not a regular expression, but the one-symbol string 3is a regular
expression that represents the set containing only the empty string!

The final grammar illustrates an important subtlety for certain applications of context-free
grammars. This grammar is considerably more complicated than one might initially expect from
the definition of regular languages. It’s tempting to suggest a much simpler grammar like

S→ Ø | 3| 0 | 1 | S+S | SS | S* | (S)

10



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

but this is incorrect! This grammar does correctly generate all regular expressions as raw strings,
but it allows parse trees that do not respect the meaning of the regular expression. For example,
this “simpler” grammar can parse the regular expression string 0*+1* in two different ways:

S

S+S

S*

*1

+S*

*0

S

S*

*S+S

1+S*

*0

The first tree correctly parses the regular expression string 1*+0* as the expression (1∗) + (0∗)
but without the redundant parentheses. The second tree incorrectly parses the same string as
(1∗ + 0)∗, which describes a very different regular language!

5.6 Regular Languages are Context-Free

The following inductive argument proves that every regular language is also a context-free
language. Let L be an arbitrary regular language, encoded by some regular expression R. Assume
that any regular expression simpler than R represents a context-free language. (“Assume no
smaller counterexample.”) We construct a context-free grammar for L as follows. There are
several cases to consider.

• Suppose L is empty. Then L is generated by the trivial grammar S→ S.

• Suppose L = {w} for some string w ∈ Σ∗. Then L is generated by the grammar S→ w.

• Suppose L is the union of some regular languages L1 and L2. The inductive hypothesis
implies that L1 and L2 are context-free. Let G1 be a context-free language for L1 with
starting non-terminal S1, and let G2 be a context-free language for L2 with starting non-
terminal S2, where the non-terminal sets in G1 and G2 are disjoint. Then L = L1 ∪ L2 is
generated by the production rule S→ S1 | S2.

• Suppose L is the concatenation of some regular languages L1 and L2. The inductive
hypothesis implies that L1 and L2 are context-free. Let G1 be a context-free language for L1
with starting non-terminal S1, and let G2 be a context-free language for L2 with starting
non-terminal S2, where the non-terminal sets in G1 and G2 are disjoint. Then L = L1 L2 is
generated by the production rule S→ S1S2.

• Suppose L is the Kleene closure of some regular language L1. The inductive hypothesis
implies that L1 is context-free. Let G1 be a context-free language for L1 with starting
non-terminal S1. Then L = L∗1 is generated by the production rule S→ ϵ | S1S.

In every case, we have found a context-free grammar that generates L, which means L is
context-free.

ÆÆÆ

11



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

It’s arguably simpler to prove this theorem by transforming any DFA (Q, s, A,δ) into an equivalent
grammar as follows.

• The non-terminals are the states Q of the DFA.
• The starting non-terminal is the start state s of the DFA.
• For every accepting state q ∈ A, we include the production rule q→ ϵ.
• For every state q and symbol a, we include the production rule q→ aq′, where q′ = δ(q, a).

Now inductive definition-chasing implies that s⇝∗ wq for some string w and state/non-terminal
q if and only if δ∗(s, w) = q. In particular, we have s⇝∗ w if and only if δ∗(s, w) ∈ A.

In the previous lecture note, we proved that the context-free language {0n1n | n≥ 0} is not
regular. (In fact, this is the canonical example of a non-regular language.) Thus, context-free
grammars are strictly more expressive than regular expressions.

5.7 Not Every Language is Context-Free

Again, you may be tempted to conjecture that every language is context-free, but a variant of our
earlier cardinality argument implies that this is not the case.

Any context-free grammar over the alphabet Σ can be encoded as a string over the alphabet
Σ∪ Γ ∪ { 3,K,|,$}, where $ indicates the end of the production rules for each non-terminal. For
example, our example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0C1

can be encoded as the string

SKA|B$AK0A|0C$BKB1|C1$CK 3|0C1$

We can further encode any such string as a binary string by associating each symbol in the
set Σ ∪ Γ ∪ { 3,K,|,$} with a different binary substring. Specifically, if we encode each of the
grammar symbols 3,K,|,$ as a string of the form 11∗0, each terminal in Σ as a string of the form
011∗0, and each non-terminal as a string of the form 0011∗0, we can unambiguously recover the
grammar from the encoding. For example, applying the code

37→ 10 0 7→ 010 S 7→ 0010

K 7→ 110 1 7→ 0110 A 7→ 00110

| 7→ 1110 B 7→ 001110

$ 7→ 11110 C 7→ 0011110

transforms our example grammar into the 136-bit string

00101100011011100011101111000110
11001000110111001000111101111000
11101100011100110111000111100110
11110001111011010111001000111100
11011110.

Adding a 1 to the start of this bit string gives us the binary encoding of the integer

102 231235 533163 527515 344124802 467059 875038.

12



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

Our construction guarantees that two different context-free grammars over the same alphabet
(ignoring changing the names of the non-terminals) yield different positive integers. Thus, the
set of context-free grammars over any alphabet is at most as large as the set of integers, and is
therefore countably infinite. (Most integers are not encodings of context-free grammars, but that
only helps us.) It follows that the set of all context-free languages over any fixed alphabet is
also countably infinite. But we already showed that the set of all languages over any alphabet is
uncountably infinite. So almost all languages are non-context-free!

There are techniques for proving that specific languages are not context-free, just as there
are for proving certain languages are not regular; unfortunately, they are beyond the scope of
this course. In particular, the langauge {0n1n0n | n≥ 0} is not context-free. (In fact, this is the
canonical example of a non-context-free language.)

5.8 Recursive Automata⋆

All the flavors of finite-state automata we have seen so far describe/encode/accept/compute
regular languages; these are precisely the languages that can be constructed from individual
strings by union, concatenation, and unbounded repetition. Just as context-free grammars are
recursive generalizations of regular expressions, we can define a class of machines called recursive
automata, which generalize (nondeterministic) finite-state automata. Recursive automata were
introduced by Walter Woods in 1970 for natural language parsing; Woods’ terminology recursive
transition networks is more common among computational linguists.

Formally, a recursive automaton consists of the following components:

• A non-empty finite set Σ, called the input alphabet

• Another non-empty finite set N , disjoint from Σ, whose elements are called module names

• A start name S ∈ N

• A set M = {MA | A∈ N} of NFAs, called modules, over the alphabet Σ∪ N . Each module
MA has the following components:

– A finite set QA of states, such that QA∩QB =∅ for all A ̸= B

– A start state sA ∈QA

– A unique terminal or accepting state tA ∈QA

– A nondeterministic transition function δA : QA× (Σ∪ {ϵ} ∪ N)→ 2QA.

Equivalently, we have a single global transition function δ : Q × (Σ ∪ {ϵ} ∪ N) → 2Q, where
Q =
⋃

A∈N QA, such that for any name A and any state q ∈QA we have δ(q) ⊆QA. Machine MS is
called the main module.

A configuration of a recursive automaton is a triple (w, q, s), where w is a string in Σ∗ called
the input, q is a state in Q called the local state, and σ is a string in Q∗ called the stack. The
module containing the local state q is called the active module. A configuration can be changed
by three types of transitions.

• A read transition consumes the first symbol in the input and changes the local state within
the active module, just like a standard NFA.

• An epsilon transition changes the local state within the active module, without consuming
any input characters, just like a standard NFA.

13



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

• A call transition chooses a module name A, pushes some state in δ(q, A) onto the stack,
and then changes the local state to sA (thereby changing the active module to MA), without
consuming any input characters.

• Finally, if the current state is the terminal state of the active module and the stack is
non-empty, a return transition pops the top state off the stack and makes it the new
local state (thereby possibly changing the active module), without consuming any input
characters.

Symbolically, we can describe these transitions as follows:

read:
�

ax , q,σ
�

7−→
�

x , q′,σ
�

for some q′ ∈ δ(q, a)

epsilon:
�

w, q,σ
�

7−→
�

w, q′,σ
�

for some q′ ∈ δ(q,ϵ)

call:
�

w, q,σ
�

7−→
�

w, sA, q′ ·σ
�

for some A∈ N and some q′ ∈ δ(q, A)

return:
�

w, tA, q ·σ
�

7−→
�

w, q,σ
�

A recursive automaton accepts a string w if there is a finite sequence of transitions starting at the
start configuration (w, sS ,ϵ) and ending at the terminal configuration (ϵ, tS ,ϵ).

ÆÆÆ Reformulate recursive automata using recursion-as-magic, analogously to the non-
determinism-as-magic in string NFAs or McNaughton and Yamada’s expression automata. A re-
cursive automaton module MA accepts a string w if any only if there is a finite sequence of
transitions

sA = q0
α1−→ q1

α2−→ q2
α3−→ · · ·

αℓ−→ qℓ = tA

among states in QA, and a decomposition of w into substrings x1 • x2 • · · ·• xℓ, where one of the
following conditions holds for each index i:

• αi = ϵ and x i = ϵ
• αi ∈ Σ and x i = αi
• αi ∈ N and module Mαi

accepts x i .
This model is then easily extended to more general transition labels:

• Recursive string-automata allow transitions to be labeled by either strings inΣ∗ or module
names, and the first two bullets in the previous list become “αi = x i”.

• Recursive expression-automata allow transitions to be labeled by either regular expres-
sions overΣ or module names, and the first two bullets in the previous list become “αi is
a regular expression and x i matches αi”.

• We could even consider recursive-expression automata, which allow transitions to be
labeled by arbitrary regular expressions overΣ∪ N .

• We could even even consider recursive-grammar automata, which allow transitions to be
labeled by arbitrary context-free grammars overΣ∪ N . WEEEE/EEEEW!

For example, the following recursive automaton accepts the language {0m1n | m ̸= n}. The
recursive automaton has two component modules; the start machine named S and a “subroutine”
named E (for “equal”) that accepts the language {0n1n | n≥ 0}. White arrows indicate recursive
transitions. The large arrow into each module indicates that module’s start state; the large arrow
leading out of each module indicates that modules terminal state.

Lemma 5.5. Every context-free language is accepted by a recursive automaton.

Proof:

ÆÆÆ Direct construction from the CFG, with one module per nonterminal.

14



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

E

0 1

E

E

E

0 1

S

0
1

ε

A recursive automaton for the language {0m1n | m ̸= n}

□

For example, the context-free grammar

S→ 0A | B1

A→ 0A | E
B→ B1 | E
E→ ϵ | 0E0

leads to the following recursive automaton with four modules:

ÆÆÆ Figure!

Lemma 5.6. Every recursive automaton accepts a context-free language.

Proof (sketch): Let R = (Σ, N , S,δ, M) be an arbitrary recursive automaton. We define a
context-free grammar G that describes the language accepted by R as follows.

The set of nonterminals in G is isomorphic the state set Q; that is, for each state q ∈Q, the
grammar contains a corresponding nonterminal [q]. The language of [q] will be the set of strings
w such that there is a finite sequence of transitions starting at the start configuration (w, q,ϵ)
and ending at the terminal configuration (ϵ, t,ϵ), where t is the terminal state of the module
containing q.

The grammar has four types of production rules, corresponding to the four types of transitions:

• read: For each symbol a and each pair of states p and q such that p ∈ δ(q, a), the grammar
contains the production rule [q]→ a[p].

• epsilon: For any two states p and q such that p ∈ δ(q,ϵ), the grammar contains the
production rule [q]→ [p].

• call: Each name A and each pair of states states p and q such that p ∈ δ(q, A), the grammar
contains the production rule [q]→ [sA][p].

• return: Each name A, the grammar contains the production rule [tA]→ ϵ.

Finally, the starting nonterminal of G is [sS], which corresponds to the start state of the main
module.

We can now argue inductively that the grammar G and the recursive automaton R describe
the same language. Specifically, any sequence of transitions in R from (w, sS ,ϵ) to (ϵ, tS ,ϵ) can be
transformed mechanically into a derivation of w from the nonterminal [sS] in G. Symmetrically,
the leftmost derivation of any string w in G can be mechanically transformed into an accepting
sequence of transitions in R. We omit the straightforward but tedious details. □

15



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

For example, the recursive automaton on the previous page gives us the following context-free
grammar. To make the grammar more readable, I’ve renamed the nonterminals corresponding to
start and terminal states: S = [sS], T = [tS], and E = [sE] = [tE]:

S→ EA | 0B E→ ϵ | 0X

A→ 1A | 1T X → EY

B→ 0B | ET Y → 1Z

T → ϵ Z → E

Our earlier proofs imply that we can forbid ϵ-transitions or even allow regular-expression
transitions in our recursive automata without changing the set of languages they accept.

5.9 Chomsky Normal Form

For many algorithmic problems involving context-free grammars, it is helpful to consider
grammars with a particular special structure called Chomsky normal form, abbreviated CNF:

• The starting non-terminal S does not appear on the right side of any production rule.

• The starting non-terminal S may have the production rule S→ ϵ.

• The right side of every other production rule is either a single terminal symbol or a string
of exactly two non-terminals—that is, every other production rule has the form A→ BC or
A→ a.

A particularly attractive feature of CNF grammars is that they yield full binary parse trees; in
particular, every parse tree for a string of length n > 0 has exactly 2n− 1 non-terminal nodes.
Consequently, any string of length n in the language of a CNF grammar can be derived in exactly
2n− 1 production steps. It follows that we can actually determine whether a string belongs to
the language of a CNF grammar by brute-force consideration of all possible derivations of the
appropriate length.

For arbitrary context-free grammars, there is no similar upper bound on the length of a
derivation, and therefore no similar brute-force membership algorithm, because the grammar
may contain additional ϵ-productions of the form A→ ϵ and/or unit productions of the form
A→ B, where both A and B are non-terminals. Unit productions introduce nodes of degree 1
into any parse tree, and ϵ-productions introduce leaves that do not contribute to the word being
parsed.

Fortunately, it is possible to determine membership in the language of an arbitrary context-free
grammar, thanks to the following theorem. Two context-free grammars are equivalent if they
define the same language.

Every context-free grammar is equivalent to a grammar in Chomsky normal form.

Moreover, there are algorithms to automatically convert any context-free grammar into Chomsky
normal form. Unfortunately, these conversion algorithms are quite complex, but for most
applications of context-free grammars, the details of the conversion are unimportant—it’s enough
to know that the algorithms exist. For the sake of completeness, however, I will describe one
such conversion algorithm in the next section.

16



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

5.10 CNF Conversion Algorithm⋆

I’ll actually prove a stronger statement: Not only can we convert any context-free grammar into
Chomsky normal form, but we can do so quickly. We analyze the running time of our conversion
algorithm in terms of the total length of the input grammar, which is just the number of symbols
needed to write down the grammar. Up to constant factors, the total length is the sum of the
lengths of the production rules.

Theorem 5.7. Given an arbitrary context-free grammar with total length L, we can compute an
equivalent grammar in Chomsky normal form with total length O(L2) in O(L2) time.

Our algorithm consists of several relatively straightforward stages. Efficient implementation
of some of these stages requires standard graph-traversal algorithms, which are described in a
different part of the course.

0. Add a new starting non-terminal. Add a new non-terminal S′ and a production rule S′→ S,
where S is the starting non-terminal for the given grammar. S′ will be the starting non-terminal
for the resulting CNF grammar. (In fact, this step is necessary only when S⇝∗ ϵ, but at this point
in the conversion process, we don’t yet know whether that’s true.)

1. Decompose long production rules. For each production rule A→ω whose right side w has
length greater than two, add new production rules of length two that still permit the derivation
A⇝∗ ω. Specifically, suppose ω= αχ for some symbol α ∈ Σ∪ Γ and string χ ∈ (Σ∪ Γ )∗. The
algorithm replaces A→ω with two new production rules A→ αB and B→ χ, where B is a new
non-terminal, and then (if necessary) recursively decomposes the production rule B→ χ. For
example, we would replace the long production rule A→ 0BC1CB with the following sequence
of short production rules, where each Ai is a new non-terminal:

A→ 0A1 A1→ BA2 A2→ CA3 A3→ 1A4 A4→ CB

This stage can significantly increase the number of non-terminals and production rules, but it
increases the total length of all production rules by at most a small constant factor.3 Moreover,
for the remainder of the conversion algorithm, every production rule has length at most two. The
running time of this stage is O(L).

2. Identify nullable non-terminals. A non-terminal A is nullable if and only if A⇝∗ ϵ. The
recursive definition of ⇝∗ implies that A is nullable if and only if the grammar contains a
production rule A→ ω where ω consists entirely of nullable non-terminals (in particular, if
ω= ϵ). You may be tempted to transform this recursive characterization directly into a recursive
algorithm, but this is a bad idea; the resulting algorithm would fall into an infinite loop if (for
example) the same non-terminal appeared on both sides of the same production rule. Instead, we
apply the following fixed-point algorithm, which repeatedly scans through the entire grammar
until a complete scan discovers no new nullable non-terminals.

3In most textbook descriptions of the CFG conversion algorithm, this stage is performed last, after removing
ϵ-productions and unit productions. But with the stages in that traditional order, removing ϵ-productions could
exponentially increase the length of the grammar in the worst case! Consider the production rule A→ (BC)k, where B
is nullable but C is not. Decomposing this rule first and then removing ϵ-productions introduces about 3k new rules;
whereas, removing ϵ-productions first introduces 2k new rules, most of which then must then be further decomposed!

17



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

Nullables(Σ, Γ , R, S):
Γϵ ←∅ 〈〈known nullable non-terminals〉〉
done← False
while ¬done

done← True
for each non-terminal A∈ Γ \ Γϵ

for each production rule A→ω
if ω ∈ Γ∗ϵ

add A to Γϵ
done← False

return Γϵ

At this point in the conversion algorithm, if S′ is not identified as nullable, then we can safely
remove it from the grammar and use the original starting nonterminal S instead.

As written, Nullables runs in O(nL) = O(L2) time, where n is the number of non-terminals
in Γ . Each iteration of the main loop except the last adds at least one non-terminal to Γϵ, so the
algorithm halts after at most n+ 1≤ L iterations, and in each iteration, we examine at most L
production rules. There is a faster implementation of Nullables that runs in O(n+ L) = O(L)
time,⁴ but since other parts of the conversion algorithm already require O(L2) time, we needn’t
bother.

3. Eliminate ϵ-productions. First, remove every production rule of the form A→ ϵ. Then for
each production rule A→ w, add all possible new production rules of the form A→ w′, where w′

is a non-empty string obtained from w by removing one nullable non-terminal. For example, if if
the grammar contained the production rule A→ BC , where B and C are both nullable, we would
add two new production rules A→ B | C . Finally, if the starting nonterminal S′ was identified as
nullable in the previous stage, add the production rule S′→ ϵ; this will be the only ϵ-production
in the final grammar. This phase of the conversion runs in O(L) time and at most triples the
number of production rules.

4. Merge equivalent non-terminals. We say that two non-terminals A and B are equivalent if
they can be derived from each other: A⇝∗ B and B ⇝∗ A. Because we have already removed
ϵ-productions, any such derivation must consist entirely of unit productions. For example, in the
grammar

S→ B | C , A→ B | D | CC | 0, B→ C | AD | 1, C → A | DA, D→ BA | CS,

non-terminals A, B, C are all equivalent, but S is not in that equivalence class (because we cannot
derive S from A) and neither is D (because we cannot derive A from D).

Construct a directed graph G whose vertices are the non-terminals andwhose edges correspond
to unit productions, in O(L) time. Then two non-terminals are equivalent if and only if they are
in the same strong component of G. Compute the strong components of G in O(L) time using,
for example, the algorithm of Kosaraju and Sharir. Then merge all the non-terminals in each
equivalence class into a single non-terminal. Finally, remove any unit productions of the form
A→ A. The total running time for this phase is O(L). Starting with our example grammar above,

⁴Consider the bipartite graph whose vertices correspond to non-terminals and the right sides of production rules,
with one edge per rule. The faster algorithm is a modified breadth-first search of this graph, starting at the vertex
representing ϵ.

18



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

merging B and C with A and removing the production A→ A gives us the simpler grammar

S→ A, A→ AA | D | DA | 0 | 1, D→ AA | AS.

We could further simplify the grammar by merging all non-terminals reachable from S using only
unit productions (in this case, merging non-terminals S and S), but this further simplification is
unnecessary.

5. Remove unit productions. Once again, we construct a directed graph G whose vertices are
the non-terminals and whose edges correspond to unit productions, in O(L) time. Because no
two non-terminals are equivalent, G is acyclic. Thus, using topological sort, we can index the
non-terminals A1, A2, . . . , An such that for every unit production Ai → A j we have i < j, again
in O(L) time; moreover, we can assume that the starting non-terminal is A1. (In fact, both the
dag G and the linear ordering of non-terminals was already computed in the previous phase!!)

Then for each index j in decreasing order, for each unit production Ai → A j and each
production A j →ω, we add a new production rule Ai →ω. At this point, all unit productions are
redundant and can be removed. Applying this algorithm to our example grammar above gives us
the grammar

S→ AA | AS | DA | 0 | 1, A→ AA | AS | DA | 0 | 1, D→ AA | AS.

In the worst case, each production rule for An is copied to each of the other n − 1 non-
terminals. Thus, this phase runs in Θ(nL) = O(L2) time and increases the length of the grammar
to Θ(nL) = O(L2) in the worst case.

This phase dominates the running time of the CNF conversion algorithm. Unlike previous
phases, no faster algorithm for removing unit transformations is known! There are grammars of
length L with unit productions such that any equivalent grammar without unit productions has
length Ω(L1.499999) (for any desired number of 9s), but this lower bound does not rule out the
possibility of an algorithm that runs in only O(L3/2) time. Closing the gap between Ω(L3/2−ϵ)
and O(L2) has been an open problem since the early 1980s!

6. Protect terminals. Finally, for each terminal a ∈ Σ, we introduce a new non-terminal Aa and
a new production rule Aa→ a, and then replace a with Aa in every production rule of length two.

This completes the conversion to Chomsky normal form! As claimed, the total running time
of the algorithm is O(L2), and the total length of the output grammar is also O(L2).

To see the conversion algorithm in action, let’s apply these stages one at a time to our very
first example grammar for the language {0m1n | m ̸= n}:

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0C1

0. Add a new starting non-terminal S′.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0C1

1. Decompose the long production rule C → 0C1.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ϵ | 0D D→ C1

19



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

2. Identify C as the only nullable non-terminal. Because S′ is not nullable, remove the
production rule S′→ S.

3. Eliminate the ϵ-production C → ϵ.

S→ A | B A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1

4. No two non-terminals are equivalent, so there’s nothing to merge.

5. Remove the unit productions S′→ S, S→ A, and S→ B.

S→ 0A | 0C | B1 | C1 | 0 | 1

A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1.

6. Finally, protect the terminals 0 and 1 to obtain the final CNF grammar.

S→ EA | EC | BF | C F | 0 | 1

A→ EA | EC | 0 B→ BF | C F | 1

C → ED D→ C F | 1
E→ 0 F → 1

Exercises

1. Describe context-free grammars that generate each of the following languages. The
function #(x , w) returns the number of occurrences of the substring x in the string w. For
example, #(0,101001) = 3 and #(010,1010100011) = 2. These are not listed in order of
increasing difficulty.

(a) All strings in {0,1}∗ whose length is divisible by 5.

(b) All strings in {0,1}∗ representing a non-negative multiple of 5 in binary.

(c) {w ∈ {0,1}∗ | #(0, w) = 2 ·#(1, w)}
(d) {w ∈ {0,1}∗ | #(0, w) ̸= 2 ·#(1, w)}
(e) {w ∈ {0,1}∗ | #(00, w) = #(11, w)}
(f) {w ∈ {0,1}∗ | #(01, w) = #(10, w)}
(g) {w ∈ {0,1}∗ | #(0, w) = #(1, w) and |w| is a multiple of 3}
(h) {0,1}∗ \ {0n1n | n≥ 0}
(i) {0n12n | n≥ 0}
(j) {0,1}∗ \ {0n12n | n≥ 0}
(k) {0n1m | 0≤ 2m≤ n< 3m}
(l) {0i1 j2i+ j | i, j ≥ 0}

(m) {0i1 j2k | i = j or j = k}
(n) {0i1 j2k | i ̸= j or j ̸= k}
(o) {0i1 j0 j1i | i, j ≥ 0}
(p)
�

w#0#(0,w)
�

� w ∈ {0,1}∗
	

20



Models of Computation Lecture 5: Context-Free Languages and Grammars [Fa’21]

(q) {x y | x , y ∈ {0,1}∗ and x ̸= y and |x |= |y|}
(r)
�

x#yR
�

� x , y ∈ {0,1}∗ and x ̸= y
	

(s) {x#y | x , y ∈ {0,1}∗ and #(0, x) = #(1, y)}
(t) {0,1}∗ \ {ww | w ∈ {0,1}∗}
(u) All strings in {0,1}∗ that are not palindromes.
(v) All strings in {(,),⋄}∗ in which the parentheses are balanced and the symbol ⋄

appears at most four times. For example, ()(()) and (⋄⋄(()()⋄)()())⋄ and ⋄⋄⋄
are strings in this language, but )(() and (⋄⋄⋄)⋄⋄ are not.

2. Describe recursive automata for each of the languages in problem 1. (“Describe” does not
necessarily mean “draw”!)

3. Prove that if L is a context-free language, then LR is also a context-free language. [Hint:
How do you reverse a context-free grammar?]

4. Consider a generalization of context-free grammars that allows any regular expression over
Σ∪ Γ to appear on the right side of a production rule. Without loss of generality, for each
non-terminal A∈ Γ , the generalized grammar contains a single regular expression R(A). To
apply a production rule to a string, we replace any non-terminal A with an arbitrary word
in the language described by R(A). As usual, the language of the generalized grammar is
the set of all strings that can be derived from its start non-terminal.

For example:, the following generalized context-free grammar describes the language
of all regular expressions over the alphabet {0,1}:

S→ (T+)∗T + Ø (Regular expressions)
T → 3+ F∗F (Terms = summable expressions)
F → (0+ 1+ (S))(*+ ϵ) (Factors = concatenable expressions)

Here is a parse tree for the regular expression 0+1(10*1+01*0)*10* (which represents the
set of all binary numbers divisible by 3):

S

T

F

*0

F

1

F

*)S

T

F

0

F

*1

F

0

+T

F

1

F

*0

F

1

(

F

1

+T

0

Prove that every generalized context-free grammar describes a context-free language.
In other words, show that allowing regular expressions to appear in production rules does
not increase the expressive power of context-free grammars.

21


	Context-Free Languages and Grammars
	Definitions
	Derivations and Languages
	Parse Trees
	From Grammar to Language
	Careful With Those Epsilons
	Mutual Induction

	More Examples
	Regular Languages are Context-Free
	Not Every Language is Context-Free
	Recursive Automata
	Chomsky Normal Form
	CNF Conversion Algorithm


