Let L be an arbitrary regular language over the alphabet $\Sigma=\{0,1\}$. Prove that the following languages are also regular. (You probably won't get to all of these during the lab session.)

1. FlipOdds $(L):=\{f l i p O d d s(w) \mid w \in L\}$, where the function flipOdds inverts every oddindexed bit in w. For example:

$$
\text { flipOdds }(\underline{0} 0 \underline{0} 01111 \underline{0} \underline{0} 1 \underline{1} 1 \underline{0} 0)=1010 \underline{0} \underline{1} 1 \underline{1} 1111110
$$

Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdds (L) as follows.

Intuitively, M^{\prime} receives some string flipOdds(w) as input, restores every other bit to obtain w, and simulates M on the restored string w.

Each state (q, flip) of M^{\prime} indicates that M is in state q, and we need to flip the next input bit if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { True, FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

2. UnflipOdd1s $(L):=\left\{w \in \Sigma^{*} \mid\right.$ flipOdd1s $\left.(w) \in L\right\}$, where the function flipOdd1 inverts every other 1 bit of its input string, starting with the first 1 . For example:

$$
\text { flipOdd1s(0000111100101010) }=0000 \underline{0} 1 \underline{0} 100 \underline{0} 010 \underline{0}
$$

Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts UnFLipOdD1s (L) as follows.

Intuitively, M^{\prime} receives some string w as input, flips every other 1 bit, and then simulates M on the transformed string.

Each state (q,flip) of M^{\prime} indicates that M is in state q, and we need to flip the next 1 bit if and only if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { TRUE, FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

3. FLipOdd1s $(L):=\{f l i p O d d 1 s(w) \mid w \in L\}$, where the function flipOdd1 is defined as in the previous problem.

Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We construct a new NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts FlipOdD1s (L) as follows.

Intuitively, M^{\prime} receives some string $\operatorname{flipOdd} 1 s(w)$ as input, guesses which 0 bits to restore to 1 s , and simulates M on the restored string w. No string in FlipOdd $1 \mathrm{~s}(L)$ has two 1 s in a row, so if M^{\prime} ever sees 11 , it must reject.

Each state (q, f flip) of M^{\prime} indicates that M is in state q, and we need to flip some 0 bit before the next 1 bit if flip = True.

$$
\begin{aligned}
Q^{\prime} & =Q \times\{\text { TRUE }, \text { FALSE }\} \\
s^{\prime} & =(s, \text { TRUE }) \\
A^{\prime} & = \\
\delta^{\prime}((q, f l i p), a) & =
\end{aligned}
$$

4. $\operatorname{ShuFfle}(L):=\{\operatorname{shuffle}(w, x) \mid w, x \in L$ and $|w|=|x|\}$, where the function shuffle is defined recursively as follows:

$$
\operatorname{shuffle}(w, x):= \begin{cases}x & \text { if } w=\varepsilon \\ a \cdot \operatorname{shuffle}(x, y) & \text { if } w=a y \text { for some } a \in \Sigma \text { and some } y \in \Sigma^{*}\end{cases}
$$

For example, shuffle $(0001101,1111001)=01010111100011$.
Solution: Let $M=(Q, s, A, \delta)$ be an arbitrary DFA that accepts L. We construct a new DFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ that accepts $\operatorname{ShuFFLE}(L)$ as follows.

Intuitively, M^{\prime} reads the string $\operatorname{shuffle}(w, x)$ as input, splits the string into the subsequences w and x, and passes those strings to two independent copies of M. Let M_{1} denote the copy that processes the first string w, and let M_{2} denote the copy that processes the second string x.

Each state $\left(q_{1}, q_{2}\right.$, next $)$ indicates that machine M_{1} is in state q_{1}, machine M_{2} is in state q_{2}, and next indicates whether M_{1} or M_{2} receives the next input bit.

$$
\begin{aligned}
Q^{\prime} & =Q \times Q \times\{1,2\} \\
s^{\prime} & =(s, s, 1) \\
A^{\prime} & = \\
\delta^{\prime}\left(\left(q_{1}, q_{2}, \text { next }\right), a\right) & =
\end{aligned}
$$

