Rice's Theorem. Let \mathcal{L} be any set of languages that satisfies the following conditions:

- There is a Turing machine Y such that $Accept(Y) \in \mathcal{L}$.
- There is a Turing machine N such that $Accept(N) \notin \mathcal{L}$.

The language $AcceptIn(\mathcal{L}) := \{ \langle M \rangle \mid Accept(M) \in \mathcal{L} \}$ is undecidable.

Prove that the following languages are undecidable using Rice's Theorem:

- 1. AcceptRegular := $\{\langle M \rangle \mid Accept(M) \text{ is regular}\}$
- 2. ACCEPTILLINI := $\{\langle M \rangle \mid M \text{ accepts the string ILLINI}\}$
- 3. AcceptPalindrome := $\{\langle M \rangle \mid M \text{ accepts at least one palindrome}\}$
- 4. AcceptThree := $\{\langle M \rangle \mid M \text{ accepts exactly three strings}\}$
- 5. ACCEPTUNDECIDABLE := $\{\langle M \rangle \mid ACCEPT(M) \text{ is undecidable } \}$

To think about later. Which of the following are undecidable? How would you prove that?

- 1. ACCEPT $\{\{\varepsilon\}\}:=\{\langle M\rangle\mid M \text{ accepts only the string }\varepsilon; \text{ that is, ACCEPT}(M)=\{\varepsilon\}\}$
- 2. ACCEPT $\{\emptyset\} := \{\langle M \rangle \mid M \text{ does not accept any strings; that is, ACCEPT}(M) = \emptyset\}$
- 3. Accept=Reject := $\{\langle M \rangle \mid Accept(M) = Reject(M)\}$
- 4. $ACCEPT \neq REJECT := \{ \langle M \rangle \mid ACCEPT(M) \neq REJECT(M) \}$
- 5. $ACCEPT \cup REJECT := \{ \langle M \rangle \mid ACCEPT(M) \cup REJECT(M) = \Sigma^* \}$