1. Consider the following k Color problem: Given an undirected graph G, can its vertices be colored with k colors, so that every edge touches vertices with two different colors?
(a) Describe a direct polynomial-time reduction from 3Color to 4Color.
(b) Prove that k Color problem is NP-hard for any $k \geq 3$.
2. Prove that each of the following problems is NP-hard.
(a) Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?
(b) Given an undirected graph G, does G have a spanning tree in which every node has degree at most 374 ?
(c) Given an undirected graph G, does G have a spanning tree with at most 374 leaves?
