1. Let G = (V, E) be a graph. A set of edges $M \subseteq E$ is said to be a matching if no two edges in M intersect at a vertex. A matching M is perfect if every vertex in V is incident to some edge in M; alternatively M is perfect if |M| = |V|/2 (which in particular implies |V| is even).

The PERFECTMATCHING problem is the following: does the given graph *G* have a perfect matching?

This can be solved in polynomial time which is a fundamental result in combinatorial optimization with many applications in theory and practice. It turns out that the PERFECT-MATCHING problem is easier to solve in bipartite graphs. A graph G = (V, E) is bipartite if its vertex set V can be partitioned into two sets L, R (left and right say) such that all edges are between L and R (in other words L and R are independent sets). Here is an attempted reduction from general graphs to bipartite graphs.

Given a graph G = (V, E) create a bipartite graph $H = (V \times \{1, 2\}, E_H)$ as follows. Each vertex u is made into two copies (u, 1) and (u, 2) with $V_1 = \{(u, 1)|u \in V\}$ as one side and $V_2 = \{(u, 2)|u \in V\}$ as the other side. Let $E_H = \{((u, 1), (v, 2))|(u, v) \in E\}$. In other words we add an edge betwen (u, 1) and (v, 2) iff (u, v) is an edge in E. Note that ((u, 1), (u, 2)) is not an edge in E for any E0 since there are no self-loops in E1. Is the preceding reduction correct? To prove it is correct we need to check that E1 has a perfect matching if and only if E2 has one.

- (a) Prove that if G has perfect matching then H has a perfect matching.
- (b) Consider *G* to be the complete graph on 3 vertices (a triangle). Show that *G* has no perfect matching but *H* has a perfect matching.
- (c) Extend the previous example to obtain a graph *G* with an even number of vertices such that *G* has no perfect matching but *H* has one.

Thus the reduction is incorrect although one of the directions is true.

- 2. An *independent set* in a graph *G* is a subset *S* of the vertices of *G*, such that no two vertices in *S* are connected by an edge in *G*. Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:
 - INPUT: An undirected graph *G* and an integer *k*.
 - OUTPUT: TRUE if *G* has an independent set of size *k*, and FALSE otherwise.
 - (a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem *in polynomial time*:
 - INPUT: An undirected graph *G*.
 - OUTPUT: The size of the largest independent set in *G*.
 - (b) Using this black box as a subroutine, describe algorithms that solves the following search problem *in polynomial time*:
 - INPUT: An undirected graph G.
 - OUTPUT: An independent set in *G* of maximum size.

To think about later:

3. Formally, a *proper coloring* of a graph G = (V, E) is a function $c: V \to \{1, 2, ..., k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $uv \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The *chromatic number* of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem *in polynomial time*:

- INPUT: An undirected graph *G* and an integer *k*.
- OUTPUT: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following *coloring problem* in polynomial time:

- INPUT: An undirected graph *G*.
- OUTPUT: A valid coloring of *G* using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph and **only** a graph, meaning **only** vertices and edges.]