1. Let $G=(V, E)$ be a graph. A set of edges $M \subseteq E$ is said to be a matching if no two edges in $M$ intersect at a vertex. A matching $M$ is perfect if every vertex in $V$ is incident to some edge in $M$; alternatively $M$ is perfect if $|M|=|V| / 2$ (which in particular implies $|V|$ is even).

The PERFECTMATCHING problem is the following: does the given graph $G$ have a perfect matching?

This can be solved in polynomial time which is a fundamental result in combinatorial optimization with many applications in theory and practice. It turns out that the PERFECTMATCHING problem is easier to solve in bipartite graphs. A graph $G=(V, E)$ is bipartite if its vertex set $V$ can be partitioned into two sets $L, R$ (left and right say) such that all edges are between $L$ and $R$ (in other words $L$ and $R$ are independent sets). Here is an attempted reduction from general graphs to bipartite graphs.

Given a graph $G=(V, E)$ create a bipartite graph $H=\left(V \times\{1,2\}, E_{H}\right)$ as follows. Each vertex $u$ is made into two copies $(u, 1)$ and $(u, 2)$ with $V_{1}=\{(u, 1) \mid u \in V\}$ as one side and $V_{2}=\{(u, 2) \mid u \in V\}$ as the other side. Let $E_{H}=\{((u, 1),(v, 2)) \mid(u, v) \in E\}$. In other words we add an edge betwen $(u, 1)$ and $(v, 2)$ iff $(u, v)$ is an edge in $E$. Note that $((u, 1),(u, 2))$ is not an edge in $H$ for any $u \in V$ since there are no self-loops in $G$. Is the preceding reduction correct? To prove it is correct we need to check that $H$ has a perfect matching if and only if G has one.
(a) Prove that if $G$ has perfect matching then $H$ has a perfect matching.
(b) Consider $G$ to be the complete graph on 3 vertices (a triangle). Show that $G$ has no perfect matching but $H$ has a perfect matching.
(c) Extend the previous example to obtain a graph $G$ with an even number of vertices such that $G$ has no perfect matching but $H$ has one.

Thus the reduction is incorrect although one of the directions is true.
2. An independent set in a graph $G$ is a subset $S$ of the vertices of $G$, such that no two vertices in $S$ are connected by an edge in $G$. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph $G$ and an integer $k$.
- Output: True if $G$ has an independent set of size $k$, and False otherwise.
(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: An undirected graph $G$.
- Output: The size of the largest independent set in $G$.
(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:
- Input: An undirected graph $G$.
- Output: An independent set in $G$ of maximum size.


## To think about later:

3. Formally, a proper coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1,2, \ldots, k\}$, for some integer $k$, such that $c(u) \neq c(v)$ for all $u v \in E$. Less formally, a valid coloring assigns each vertex of $G$ a color, such that every edge in $G$ has endpoints with different colors. The chromatic number of a graph is the minimum number of colors in a proper coloring of $G$.

Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph $G$ and an integer $k$.
- Output: True if $G$ has a proper coloring with $k$ colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- Input: An undirected graph $G$.
- Output: A valid coloring of $G$ using the minimum possible number of colors.
[Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.]

