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In the search for thinking machines
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“Most General” computer?

1 DFAs are simple model of computation.

2 Accept only the regular languages.

3 Is there a kind of computer that can accept any language, or compute any function?

4 Recall counting argument. Set of all languages:
{L | L ⊆ {0, 1}∗} is (((((((((hhhhhhhhhcountably infinite / uncountably infinite

5 Set of all programs:
{P | P is a finite length computer program}:
is countably infinite /

((((((((((hhhhhhhhhh
uncountably infinite.

6 Conclusion: There are languages for which there are no programs.
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What can be computed?

Most General Computer:

1 If not all functions are computable, which are?

2 Is there a “most general” model of computer?

3 What languages can they recognize?
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History: Formalizing mathematics

1 19th century: Ooops. Math is a mess. Oy.
Fix calculus, invented set theory (Cantor), etc.

2 David Hilbert (1862–1943)
1 1900: The list of 23 problems.
2 Early 1900s – crisis in math foundations

attempts to formalize resulted in paradoxes, etc.
3 1920: Hilbert’s Program: “mechanize” mathematics.
4 Finite axioms, inference rules turn crank, determine truth needed: axioms consistent

& complete
5 Hilbert: “No one shall expel us from the paradise that Cantor has created.”.

3 Kurt Gödel (1906–1978)
German logician, at age 25 (1931) proved: “There are true statements that can’t
be proved or disproved”. (i.e., “no” to Hilbert)
Shook the foundations of mathematics/philosophy/science/everything.
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More history: Turing...

Alan Turing (1912–1954):

1 British mathematician

2 cryptoanalysis during WW II (enigma project)

3 Defined a computing model/program. In 1936 (age 23) provided foundations for
investigating fundamental question of what is computable, what is not computable.

4 Gay, suicide.

5 Movies, UK apology.

6 Proved the halting theorem: Deciding if a computer program stops on a given
input can not be decided by a program.
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Turing original paper...

Is quite readable. Available here:
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
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THE END
...

(for now)
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8.2
What is a Turing machine
FLNAME:8.2.0.0
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Turing machine

1 Input written on (infinite) one sided tape.

2 Special blank characters.

3 Finite state control (similar to DFA).

4 Ever step: Read character under head, write character out, move the head right or
left (or stay).
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High level goals

1 Church-Turing thesis: TMs are the most general computing devices. So far no
counter example.

2 Every TM can be represented as a string.

3 Existence of Universal Turing Machine which is the model/inspiration for stored
program computing. UTM can simulate any TM

4 Implications for what can be computed and what cannot be computed
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Turing machine: Formal definition

A Turing machine is a 7-tuple
(Q,Σ, Γ, δ, q0, qacc, qrej)

Q: finite set of states.

Σ: finite input alphabet.

Γ: finite tape alphabet.

δ : Q × Γ→ Q × Γ× {L, R, S}: Transition function.

q0 ∈ Q is the initial state.

qacc ∈ Q is the accepting/final state.

qrej ∈ Q is the rejecting state.

t or : Special blank symbol on the tape.
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Turing machine: Transition function

δ : Q × Γ→ Q × Γ× {L, R, S}

As such, the transition

δ(q, c) = (p, d , L) q pc/d, L

1 q: current state.

2 c : character under tape head.

3 p: new state.

4 d : character to write under tape head

5 L: Move tape head left.

Missing transitions lead to hell
state.
“Blue screen of death.”
“Machine crashes.”
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THE END
...

(for now)
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8.3
Snapshots, computation as sequence of
strings
FLNAME:8.3.0.0
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Snapshot = ID: Instantaneous Description

1 Contains all necessary information to capture “state of the computation”.
2 Includes

1 state q of M
2 location of read/write head
3 contents of tape from left edge to rightmost non-blank (or to head, whichever is

rightmost).
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Snapshot = ID: Instantaneous Description
As a string

xix1x2

q

xn
ID: x1x2 . . . xi−1qxixi+1 . . . xn
x1, . . . , xn ∈ Γ, q ∈ Q.
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A step in computation as rewriting strings

x1x2 . . . xi−1qxixi+1 . . . xn
If transition is δ(q,Xi ) = (p,Y , L), new ID is:

current ID : x1x2 . . . xi−2xi−1qxixi+1 . . . xn

δ(q,Xi ) = (p, y , L) =⇒ x1x2 . . . xi−2pxi−1yxi+1 . . . xn

If no transition defined, or illegal transition, then no next ID (crash).
Shockingly: Computation is just a string rewriting system.
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A step in computation as rewriting strings

1 Initial ID: q0w :

2 Accepting ID: αqaccα
′, for some α,α′ ∈ Γ∗.

3 Rejecting ID: αqrejα
′, for some α,α′ ∈ Γ∗.

4 I  J :Denotes that if we start execution of TM with configuration/ID encoded
by I, leads TM (after maybe several steps) to ID J

5 M accepts w : If for some α,α′ ∈ Γ∗, we have

q0w  αqaccα
′.

Acceptance happens as soon as TM enters accept state.

6 Language of TM M : L(M) = {w ∈ Σ∗ | M accepts w}.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 41



A step in computation as rewriting strings

1 Initial ID: q0w :

2 Accepting ID: αqaccα
′, for some α,α′ ∈ Γ∗.

3 Rejecting ID: αqrejα
′, for some α,α′ ∈ Γ∗.

4 I  J :Denotes that if we start execution of TM with configuration/ID encoded
by I, leads TM (after maybe several steps) to ID J

5 M accepts w : If for some α,α′ ∈ Γ∗, we have

q0w  αqaccα
′.

Acceptance happens as soon as TM enters accept state.

6 Language of TM M : L(M) = {w ∈ Σ∗ | M accepts w}.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 41



A step in computation as rewriting strings

1 Initial ID: q0w :

2 Accepting ID: αqaccα
′, for some α,α′ ∈ Γ∗.

3 Rejecting ID: αqrejα
′, for some α,α′ ∈ Γ∗.

4 I  J :Denotes that if we start execution of TM with configuration/ID encoded
by I, leads TM (after maybe several steps) to ID J

5 M accepts w : If for some α,α′ ∈ Γ∗, we have

q0w  αqaccα
′.

Acceptance happens as soon as TM enters accept state.

6 Language of TM M : L(M) = {w ∈ Σ∗ | M accepts w}.

Har-Peled (UIUC) CS374 19 Fall 2020 19 / 41



Non-accepting computation

M does not accept w if:

1 M enters qrej (i.e., M rejects w)

2 M crashes (moves to left of tape, no transition available, etc).

3 M runs forever.

If the TM keeps running, should we wait, or is it rejection?
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Everything is a number
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THE END
...

(for now)
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8.4
Languages defined by a Turing machine
FLNAME:8.4.0.0
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Recursive vs. Recursively Enumerable

1 Recursively enumerable (aka RE) languages

L = {L(M) | M some Turing machine} .

2 Recursive / decidable languages

L = {L(M) | M some Turing machine that halts on all inputs} .

3 Fundamental questions:
1 What languages are RE?
2 Which are recursive?
3 What is the difference?
4 What makes a language decidable?
5 How much wood would a TM chuck, if a TM could chuck wood?
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How was the Turing Machine invented...
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THE END
...

(for now)

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 41



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

8.5
Some examples of Turing machines
FLNAME:8.5.0.0
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8.5.1
Turing machine for w$w
FLNAME:8.5.1.0
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Example: Turing machine for w$w

q0

q1 q2

q3 q4

qacc

q5

q6 q7

x → x, R

b→
x, R

$→
x
,R

a → x, L

$ → $, L

$ → $, R

$ → $, R

␣ → ␣, R

a → x, R b → b, L
a → a, L

x → x, L

x → x, Rb → b, R
a → a, R

x → x, R

x → x, R

b → b, R
a → a, R

b → x, L
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THE END
...

(for now)
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8.5.2
Turing machine for 0n1n

FLNAME:8.5.2.0
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Example: Turing machine for 0n1n

Mark 0

accept

Find &
 mark 1

0/0', R

Check for
1s

1'/1',R

0/0, R
1'/1', R

Find 
next

01/1',L

0'/0', R

0/0, L
1'/1', L

␣

1'/1',R
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THE END
...

(for now)
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8.5.3
Turing machine for anbncn

FLNAME:8.5.3.0
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Example: Turing machine for anbncn

A language that is not context free...

Mark a

accept

Find &
 mark b

a/A, →

Check for
bs

B/B, →

a/a, →
B/B, → 

Find &
 mark c

b/B, →

b/b, →
C/C, →

Find 
next

0c/C, ←

A/A, →

C/C, ←
b/b, ←
B/B, ←
a/a, ←

B/B, →

Check for
cs

C/C, → ␣

C/C, →
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THE END
...

(for now)
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8.6
Why Turing Machine is a “real” computer?
FLNAME:8.6.0.0
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Why Turing Machine is a “real” computer?

TM can compute anything that a real computer can, if very very very tediously.
1 Add/multiply two numbers in binary representation.
2 Move input tape one position to the right.
3 Simulate a TM with two tapes.
4 Simulate a TM with many tapes.
5 Stack.
6 Subroutines.
7 Compile say any C program into a TM.
8 Conclusion: TM can do what a regular program can do.
9 Turing brilliant observation: A TM can simulate/modify another TM.
10 Modern equivalent: An interpreter can run a program that might be the interpreter

itself (you don’t say).
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So what Turing Machines are good for?

1 Simplest mathematical way to describe a computer/program.

2 A good sandbox to argue about what programs can and can not do.

3 A terrible counter-intuitive model, completely unlike real world programs.

4 TM = PROGRAM.
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Universal Turing Machine
Turing Machine that simulates another Turing Machine

UTM: A Turing machine that can simulate another Turing machine.

1 Programs can self replicate.

2 Program can modify themselves (a big no no nowadays).

3 Program can rewrite a program.

4 Turing had created a Pandora box...
...which we will open in the next lecture.
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THE END
...

(for now)
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