Context Free Languages and Grammars

Lecture 7
Tuesday, September 15, 2020

Algorithms \& Models of Computation
7.1

A fluffy introduction to context free languages, push down automatas

What stack got to do with it?

What's a stack but a second hand memory?
(1) DFA/NFA/Regular expressions.
\equiv constant memory computation.
(2) Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

(1) DFA/NFA/Regular expressions. \equiv constant memory computation.
(2) NFA + stack三 context free grammars (CFG).
(3) Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

(1) DFA/NFA/Regular expressions.三 constant memory computation.
(2) NFA + stack \equiv context free grammars (CFG).
(3) Turing machines DFA/NFA + unbounded memory.

三 a standard computer/program.
\equiv NFA with two stacks.

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure

Programming Languages

```
<relational-expression> ::= <shift-expression>
                                    relational-expression> < <shift-expression>
                                    relational-expression> > <shift-expression>
                                    relational-expression> <= <shift-expression>
                                    <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
<shift-expression> <\lladditive-expression> <shift-expression\gg> <additive-expression>
<additive-expression> ::= <multiplicative-expression> <additive-expression> + <multiplicative-expression> <additive-expression> - <multiplicative-expression>
<multiplicative-expression> * <cast-expression> <multiplicative-expression> / <cast-expression> <multiplicative-expression> of <cast-expression>
<cast-expression> ::= <unary-expression>
| ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
++ <unary-expression>
-- <unary-expression>
<unary-operator> <cast-expression>
sizeof <unary-expression>
sizeof <type-name>
<postfix-expression> ::= <primary-expression>
\(|\)\begin{tabular}{l} 
<postfix-expression> [ <expression> ] \\
<postfix-expression> ( i<assignment-expression>\}*) \\
<postfix-expression> . <identifier> \\
<postfix-expression> -> <identifier> \\
<postfix-expression> ++ \\
<postfix-expression> --
\end{tabular}
```


Natural Language Processing

English sentences can be described as
$\langle S\rangle \rightarrow\langle N P\rangle\langle V P\rangle$ $\langle N P\rangle \rightarrow\langle C N\rangle \mid\langle C N\rangle\langle P P\rangle$
$\langle V P\rangle \rightarrow\langle C V\rangle \mid\langle C V\rangle\langle P P\rangle$
$\langle P P\rangle \rightarrow\langle P\rangle\langle C N\rangle$
$\langle C N\rangle \rightarrow\langle A\rangle\langle N\rangle$
$\langle C V\rangle \rightarrow\langle V\rangle \mid\langle V\rangle\langle N P\rangle$
$\langle A\rangle \rightarrow a$ |the
$\langle N\rangle \rightarrow$ boy | girl | flower
$\langle V\rangle \rightarrow$ touches | likes | sees
$\langle P\rangle \rightarrow$ with

English Sentences
Examples

$$
\begin{aligned}
& \overbrace{\text { noun-phrs }}^{\text {verb-phrs }} \\
& \overbrace{\underbrace{a} \text { boy sees }}^{\text {sen }} \\
& \text { article noun verb } \\
& \overbrace{\underbrace{\text { the }}}^{\text {noum-phrs }} \underbrace{\text { verb-phrs }}_{\underbrace{\text { boess }}} \text { aflower } \\
& \text { article noun verb noun-phrs }
\end{aligned}
$$

Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

THE END

(for now)

Algorithms \& Models of Computation
7.2

Formal definition of convex-free languages (CFGs)

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$
Formally, $P \subset V \times(\boldsymbol{V} \cup T)^{*}$
- $S \in V$ is a start svmbol

$$
G=(\text { Variables, } \quad \text { Terminals, } \quad \text { Productions, } \quad \text { Start var })
$$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $\boldsymbol{A} \in V$ and α is a string in $(V \cup T)^{*}$
Formally, $P \subset V \times(\mathrm{V} \cup T)^{*}$
- $S \in V$ is a start symbol

$$
G=(\text { Variables, Terminals, Productions, Start var })
$$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- \boldsymbol{P} is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and $\boldsymbol{\alpha}$ is a string in $(V \cup T)^{*}$. Formally, $\boldsymbol{P} \subset \boldsymbol{V} \times(\boldsymbol{V} \cup \boldsymbol{T})^{*}$.

$$
G=(\text { Variables, Terminals, Productions, Start var })
$$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- \boldsymbol{P} is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $\boldsymbol{A} \in \boldsymbol{V}$ and $\boldsymbol{\alpha}$ is a string in $(\boldsymbol{V} \cup \boldsymbol{T})^{*}$. Formally, $P \subset V \times(V \cup T)^{*}$.
- $S \in V$ is a start symbol

$$
G=(\text { Variables, Terminals, Productions, Start var })
$$

Example

- $\boldsymbol{V}=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b b$

What strings can S generate like this?

Example

- $\boldsymbol{V}=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)
$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b a$

Example

- $V=\{S\}$
- $\boldsymbol{T}=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$$
S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b b a
$$

What strings can S generate like this?

Example formally...

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$$
G=\left(\begin{array}{ll}
\{S\}, & \{a, b\},
\end{array} \quad\left\{\begin{array}{c}
S \rightarrow \epsilon, \\
S \rightarrow a, \\
S \rightarrow b \\
S \rightarrow a S a \\
S \rightarrow b S b
\end{array}\right\} \quad S\right.
$$

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

Examples

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Examples

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

$$
S \rightarrow \epsilon \mid 0 S 1
$$

Notation and Convention

Let $G=(V, T, P, S)$ then

- a, b, c, d, \ldots, in T (terminals)
- A, B, C, D, \ldots, in V (non-terminals)
- u, v, w, x, y, \ldots in T^{*} for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^{*}$
- X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated

Definition

Let $G=(V, T, P, S)$ be a CFG. For strings $\alpha_{1}, \alpha_{2} \in(V \cup T)^{*}$ we say α_{1} derives $\boldsymbol{\alpha}_{2}$ denoted by $\boldsymbol{\alpha}_{1} \rightsquigarrow_{\boldsymbol{G}} \boldsymbol{\alpha}_{2}$ if there exist strings $\boldsymbol{\beta}, \gamma, \boldsymbol{\delta}$ in $(\boldsymbol{V} \cup \boldsymbol{T})^{*}$ such that

- $\alpha_{1}=\beta A \delta$
- $\alpha_{2}=\boldsymbol{\beta} \gamma \boldsymbol{\delta}$
- $A \rightarrow \gamma$ is in P.

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0 S 1,0 S 1 \rightsquigarrow 00 S 11,0 S 1 \rightsquigarrow 01$.

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \boldsymbol{\alpha}_{2}$ if $\boldsymbol{\alpha}_{1}=\boldsymbol{\alpha}_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{1} \rightsquigarrow^{k-1} \boldsymbol{\alpha}_{2}$.
-

is the reflexive and transitive closure of
$\alpha_{1} \rightsquigarrow_{*}^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k
Examples: S $\sim_{*}^{*} \epsilon$, OS1 ~* 000001111

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\boldsymbol{\alpha}_{1} \rightsquigarrow^{0} \boldsymbol{\alpha}_{2}$ if $\boldsymbol{\alpha}_{1}=\boldsymbol{\alpha}_{2}$
- $\alpha_{1} \rightsquigarrow^{\boldsymbol{k}} \boldsymbol{\alpha}_{2}$ if $\boldsymbol{\alpha}_{1} \rightsquigarrow \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{1} \rightsquigarrow^{\boldsymbol{k}-1} \boldsymbol{\alpha}_{2}$.
- Alternative definition: $\boldsymbol{\alpha}_{1} \rightsquigarrow^{\boldsymbol{k}} \boldsymbol{\alpha}_{2}$ if $\boldsymbol{\alpha}_{1} \rightsquigarrow^{\boldsymbol{k}-1} \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{1} \rightsquigarrow \boldsymbol{\alpha}_{2}$
$\leadsto *$ is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k
Examples: $S \sim_{*}^{*} \epsilon, 0 S 1 \sim^{*} 000001111$

"Derives" relation continued

Definition

For integer $k \geq 0, \alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\boldsymbol{\alpha}_{1} \rightsquigarrow^{\boldsymbol{k}} \boldsymbol{\alpha}_{2}$ if $\boldsymbol{\alpha}_{1} \rightsquigarrow^{\boldsymbol{k}-1} \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{1} \rightsquigarrow \boldsymbol{\alpha}_{2}$
\rightsquigarrow^{*} is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k.
Examples: $S \sim_{*}^{*} \epsilon, 0 S 1 \sim_{*}^{*} 0000011111$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$.

Example

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& S \rightarrow \epsilon \mid 0 S 1 \\
& L=\left\{0^{n} 1^{m} \mid m>n\right\} \\
& L=\left\{w \in\{(,)\}^{*} \mid w \text { is properly nested string of parenthesis }\right\} .
\end{aligned}
$$

THE END

(for now)

7.3

Converting regular languages into CFL

Converting regular languages into

$M=(Q, \Sigma, \delta, s, A): D F A$ for regular language L.

Productions
$G=(\overbrace{\boldsymbol{Q}}^{\text {Variables }}, \overbrace{\Sigma}^{\text {Terminals }}, \overbrace{\left\{\begin{array}{c}\{\boldsymbol{q} \rightarrow \boldsymbol{a}(\boldsymbol{q}, \boldsymbol{a}) \mid \boldsymbol{q} \in Q, a \in \Sigma\} \\ \cup\{\boldsymbol{q} \rightarrow \varepsilon \mid \boldsymbol{q} \in A\}\end{array}\right.}, \overbrace{\overbrace{s}}^{\text {Start var }})$

Conversion continued...

$$
G=\left(\{A, B, C, D, E\},\{a, b\},\left\{\begin{array}{r}
A \rightarrow a A, A \rightarrow b A, A \rightarrow a B, \\
B \rightarrow b C, \\
C \rightarrow a D, \\
D \rightarrow b E, \\
E \rightarrow a E, E \rightarrow b E, E \rightarrow \varepsilon
\end{array}\right\}\right)
$$

The result...

Lemma

For an regular language \mathbf{L}, there is a context-free grammar (CFG) that generates it.

THE END

(for now)

7.4

Some properties of CFLs

7.4.1
 Closure properties of CFLs

Bad news: Canonical non-CFL

Theorem

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.
Proof based on pumping lemma for CFLS. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem

CFLS are not closed under intersection.

Closure Properties of CFLS

$$
\begin{aligned}
& \boldsymbol{G}_{1}=\left(\boldsymbol{V}_{1}, \boldsymbol{T}, \boldsymbol{P}_{1}, \boldsymbol{S}_{1}\right) \text { and } \boldsymbol{G}_{2}=\left(\boldsymbol{V}_{2}, \boldsymbol{T}, \boldsymbol{P}_{2}, \boldsymbol{S}_{2}\right) \\
& \text { Assumption: } \boldsymbol{V}_{1} \cap \boldsymbol{V}_{2}=\emptyset \text {, that is, non-terminals are not shared }
\end{aligned}
$$

Theorem

are closed under union. L_{1}, L_{2} CFLS implies $L_{1} \cup L_{2}$ is a CFL

Theorem

are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \cdot L_{2}$ is a CFL

Closure Properties of CFLs

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(\boldsymbol{V}_{2}, \boldsymbol{T}, P_{2}, S_{2}\right)$
Assumption: $\boldsymbol{V}_{1} \cap \boldsymbol{V}_{2}=\emptyset$, that is, non-terminals are not shared

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLS implies $L_{1} \cup L_{2}$ is a CFL.

Theorem

CFLs are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \bullet L_{2}$ is a CFL.

Theorem

CFLS are closed under Kleene star.
If L is a CFL $\Rightarrow L^{*}$ is a CFL.

Closure Properties of CFLs

Union

$\boldsymbol{G}_{1}=\left(\boldsymbol{V}_{1}, \boldsymbol{T}, \boldsymbol{P}_{1}, \boldsymbol{S}_{1}\right)$ and $\boldsymbol{G}_{2}=\left(\boldsymbol{V}_{2}, \boldsymbol{T}, \boldsymbol{P}_{2}, \boldsymbol{S}_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared.

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLS implies $L_{1} \cup L_{2}$ is a CFL.

Closure Properties of CFLs

Theorem

CFLS are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \bullet L_{2}$ is a CFL.

Closure Properties of CFLs

Stardom (i.e, Kleene star)

Theorem

CFLS are closed under Kleene star. If L is a CFL $\Longrightarrow L^{*}$ is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- Prove the set of regular expressions over an alphabet Σ forms a non-regular language which is context-free.

Even more bad news: CFL not closed under complement

Theorem

CFLS are not closed under complement.

Good news: Closure Properties of CFLS continued

Theorem
 If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.

THE END

(for now)

7.4.2
 Parse trees and ambiguity

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim \sim_{*}^{*} \boldsymbol{w}$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim \sim_{*}^{*} \boldsymbol{w}$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule
A picture is worth a thousand words

Example

Ambiguity in CFLs

Definition

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is unambiguous.

Example: $S \rightarrow S-S|1| 2 \mid 3$

Ambiguity in CFLs

- Original grammar: $\boldsymbol{S} \boldsymbol{\rightarrow} \boldsymbol{S}-\boldsymbol{S}|1| 2 \mid 3$
- Unambiguous grammar:

$$
\begin{aligned}
& S \rightarrow S-C|1| 2 \mid 3 \\
& C \rightarrow 1|2| 3
\end{aligned}
$$

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs. Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$
- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLS. Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$
- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs. Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$
- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

THE END

(for now)

7.5

CFGs; Proving a grammar generate a specific language

Inductive proofs for CFGs

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$

Theorem

$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$

Inductive proofs for CFGs

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$

Theorem

$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$
Two directions:

- $L(G) \subseteq L$, that is, $S w^{*} w$ then $w=w^{R}$
- $L \subseteq L(G)$, that is, $w=w^{R}$ then $S w^{*} w$

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning For all $k \geq 1, S \mathfrak{w}^{* k} w$ implies $w=w^{R}$.

```
- If \(S w^{1} w\) then \(w=\epsilon\) or \(w=a\) or \(w=b\). Each case \(w=w^{R}\)
```

- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S w^{n} w$ (with $n>1$). Wlog w begin with a
- Then $S \rightarrow$ aSa \rightsquigarrow^{k-1} aua where $w=$ aua.
- And $S \rightsquigarrow^{n-1} u$ and hence $I H, u=u^{R}$.
- Therefore $w^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning
For all $k \geq 1, S \sim^{* k} w$ implies $w=w^{R}$.

- If $S w^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$.
- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S \rightsquigarrow^{n} w$ (with $n>1$). Wlog w begin with a.
- Then $S \rightarrow a S a \rightsquigarrow^{k-1}$ aua where $\boldsymbol{w}=\boldsymbol{a u a}$.
- And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n}-1} \boldsymbol{u}$ and hence $\mathrm{H}, \boldsymbol{u}=\boldsymbol{u}^{\boldsymbol{R}}$.
- Therefore $\boldsymbol{w}^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$.

$L \subseteq L(G)$

Show that if $w=w^{R}$ then $S w^{*} w$.
By induction on $|w|$
That is, for all $k \geq 0,|w|=k$ and $w=w^{R}$ implies $S w^{*} w$.
Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.
See Section 5.3.2 of the notes for an example proof.

THE END

(for now)

7.6
 CFGs normal form

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs
Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs
Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$. If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

```
Greibach Normal Form
- Only productions of the form \(A \rightarrow a \beta\) are allowed.
- All CFLS without \(\epsilon\) have a grammar in GNF. Efficient algorithm
- Advantage: Every derivation adds exactly one terminal.
```


Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow B C$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$. If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $\boldsymbol{A} \rightarrow \boldsymbol{a} \boldsymbol{\beta}$ are allowed.
- All CFLS without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

THE END

(for now)

7.7
 Pushdown automatas

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

Pushdown automata by example

THE END

(for now)

Algorithms \& Models of Computation

7.8

Supplemental: Why $a^{n} b^{n} c^{n}$ is not CFL

You are bound to repeat yourself...

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
(1) For the sake of contradiction assume that there exists a grammar: G a CFG for L.
(2) T_{i} : minimal parse tree in G for $a^{i} b^{i} \boldsymbol{c}^{i}$.
© $h_{i}=\operatorname{height}\left(T_{i}\right)$: Length of longest path from root to leaf in T_{i}

- For any integer t, there must exist an index $j(t)$, such that $h_{j(t)}>t$
© There an index \boldsymbol{i}, such that $\boldsymbol{h}_{\boldsymbol{j}}>(2 * \#$ variables in $\boldsymbol{G})$.

You are bound to repeat yourself...

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
(1) For the sake of contradiction assume that there exists a grammar: G a CFG for L.
(2) T_{i} : minimal parse tree in G for $a^{i} b^{i} \boldsymbol{c}^{i}$.
(0) $\boldsymbol{h}_{\boldsymbol{i}}=\operatorname{height}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)$: Length of longest path from root to leaf in $\boldsymbol{T}_{\boldsymbol{i}}$.
(1) For any integer \boldsymbol{t}, there must exist an index $\boldsymbol{j}(\boldsymbol{t})$, such that $\boldsymbol{h}_{j(t)}>\boldsymbol{t}$.

- There an index \boldsymbol{j}, such that $\boldsymbol{h}_{\boldsymbol{j}}>(2 * \#$ variables in $\boldsymbol{G})$.

Repetition in the parse tree...

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} c^{j}$

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} c^{j} \Longrightarrow x y^{2} z v^{2} w \in L$

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0 .
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b . . . a . . . b . .$.

Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

- Similarly, not possible that y contains both b and c
- Similarly, not possible that v contains both a and b
- Similarly, not possible that v contains both b and c
- If y contains only as, and v contains only $b s$, then... \#(a) $(\tau) \neq \#(c)(\tau)$

Not possible

- Similarly, not possible that y contains only as, and v contains only $c s$

Similarly, not possible that y contains only $b s$, and v contains only $c s$

- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If \boldsymbol{y} contains both \boldsymbol{a} and \boldsymbol{b}, then, $\boldsymbol{\tau}=\ldots$.....b...a...b....
- Similarly, not possible that y contains both b and c
- Similarly, not possible that v contains both a and b
- Similarly, not possible that v contains both b and c
- If y contains only as, and v contains only $b s$, then... \#(a) $(\tau) \neq \#(c)(\tau)$

Not possible

- Similarly, not possible that y contains only as, and v contains only $c s$

Similarly, not possible that y contains only $b s$, and v contains only $c s$.

- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If \boldsymbol{y} contains both \boldsymbol{a} and \boldsymbol{b}, then, $\boldsymbol{\tau}=$...a...b...a...b....

Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

- Similarly, not possible that y contains both b and c
- Similarly, not possible that v contains both a and b
- Similarly, not possible that v contains both b and c
- If \boldsymbol{y} contains only $\boldsymbol{a s}$, and \boldsymbol{v} contains only $\boldsymbol{b s}$, then... \#(a) $(\tau) \neq \#(c)(\tau)$

Not possible

- Similarly, not possible that y contains only as, and v contains only cs.

Similarly, not possible that y contains only $b s$, and v contains only cs.

- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If \boldsymbol{y} contains both \boldsymbol{a} and \boldsymbol{b}, then, $\boldsymbol{\tau}=\ldots$.....b...a...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c
- If y contains only as, and v contains only $b s$, then... \#(a) $(\tau) \neq \#_{(c)}(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs
- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b \ldots a \ldots b . .$. Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both \boldsymbol{a} and \boldsymbol{b}.
- Similarly, not possible that \boldsymbol{v} contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only bs, then... \#(a) $(\tau) \neq \#(c)(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs Similarly, not possible that y contains only $b s$, and v contains only cs
- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b . . . a \ldots b . .$. . Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both \boldsymbol{a} and \boldsymbol{b}.
- Similarly, not possible that v contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b \ldots a \ldots b . .$. . Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both \boldsymbol{a} and \boldsymbol{b}.
- Similarly, not possible that v contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction

Now for some case analysis...

- We know:

$$
\begin{aligned}
& x y z v w=a^{j} b^{j} c^{j} \\
& |y|+|v|>0
\end{aligned}
$$

- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a \ldots b . . . a \ldots b . .$. . Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both \boldsymbol{a} and \boldsymbol{b}.
- Similarly, not possible that v contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

We conclude...

Lemma

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not CFL (i.e., there is no CFG for it).

