Algorithms & Models of Computation

Context Free Languages and Grammars

Lecture 7 Tuesday, September 15, 2020

CS/ECE 374, Fall 2020

LATEXed: September 1, 2020 21:21

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.1

A fluffy introduction to context free languages, push down automatas

What stack got to do with it?

What's a stack but a second hand memory?

- DFA/NFA/Regular expressions.
 - \equiv constant memory computation.
- - \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

- ◆ DFA/NFA/Regular expressions.■ constant memory computation.
- NFA + stack≡ context free grammars (CFG).
- Turing machines $\frac{DFA}{NFA}$ + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

What's a stack but a second hand memory?

- DFA/NFA/Regular expressions.
 - \equiv constant memory computation.
- - \equiv context free grammars (CFG).
- \odot Turing machines DFA/NFA + unbounded memory.
 - ≡ a standard computer/program.
 - \equiv NFA with two stacks.

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure
- . . .

```
<relational-expression> ::= <shift-expression>
                            <relational-expression> < <shift-expression>
                            <relational-expression> > <shift-expression>
                            <relational-expression> <= <shift-expression>
                            <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                       <shift-expression> << <additive-expression>
                       <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                          <additive-expression> + <multiplicative-expression>
                          <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                                <multiplicative-expression> * <cast-expression>
                                <multiplicative-expression> / <cast-expression>
                                <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                    ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                       ++ <unary-expression>
                       -- <unary-expression>
                       <unary-operator> <cast-expression>
                       sizeof <unary-expression>
                       sizeof <tvpe-name>
<postfix-expression> ::= <primary-expression>
                         <postfix-expression> [ <expression> ]
                         <postfix-expression> ( {<assignment-expression>}* )
                         <postfix-expression> . <identifier>
                         <postfix-expression> -> <identifier>
                         <postfix-expression> ++
                         <postfix-expression> --
```

Natural Language Processing

English sentences can be described as

```
\begin{split} \langle S \rangle & \rightarrow \langle NP \rangle \langle VP \rangle \\ \langle NP \rangle & \rightarrow \langle CN \rangle | \langle CN \rangle \langle PP \rangle \\ \langle VP \rangle & \rightarrow \langle CV \rangle | \langle CV \rangle \langle PP \rangle \\ \langle PP \rangle & \rightarrow \langle P \rangle \langle CN \rangle \\ \langle CN \rangle & \rightarrow \langle A \rangle \langle N \rangle \\ \langle CV \rangle & \rightarrow \langle V \rangle | \langle V \rangle \langle VP \rangle \\ \langle A \rangle & \rightarrow a \mid \text{the} \\ \langle N \rangle & \rightarrow \text{boy} \mid \text{girl} \mid \text{flower} \\ \langle V \rangle & \rightarrow \text{touches} \mid \text{likes} \mid \text{sees} \\ \langle P \rangle & \rightarrow \text{with} \end{split}
```

English Sentences Examples

article noun verb noun-phrs

Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

7.2

Formal definition of convex-free languages (CFGs)

Definition

A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = ($$
 Variables, Terminals, Productions, Start var

Definition

A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = \left($$
 Variables, Terminals, Productions, Start var

Definition

A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = \left($$
 Variables, Terminals, Productions, Start var

Definition

A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.
- $S \in V$ is a start symbol

$$G = \left($$
 Variables, Terminals, Productions, Start var

- $V = \{S\}$
- $T = \{a, b\}$
- $\bullet \ P = \{S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb\} \\ (\mathsf{abbrev}. \ \mathsf{for} \ S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow aSa, S \rightarrow bSb)$

S → aSa → abSba → abbSbba → abb b bba

What strings can ${\cal S}$ generate like this?

- $V = \{S\}$
- $T = \{a, b\}$
- $\bullet \ P = \{S \to \epsilon \mid a \mid b \mid aSa \mid bSb\} \\ (\mathsf{abbrev}. \ \mathsf{for} \ S \to \epsilon, S \to a, S \to b, S \to aSa, S \to bSb)$

Fall 2020

12 / 64

What strings can **S** generate like this?

- $V = \{S\}$
- $T = \{a, b\}$
- $\bullet \ P = \{S \to \epsilon \mid a \mid b \mid aSa \mid bSb\} \\ (\mathsf{abbrev}. \ \mathsf{for} \ S \to \epsilon, S \to a, S \to b, S \to aSa, S \to bSb)$

Fall 2020

12 / 64

What strings can **S** generate like this?

Example formally...

- $V = \{S\}$
- $T = \{a, b\}$
- $\bullet \ P = \{S \to \epsilon \mid a \mid b \mid aSa \mid bSb\} \\ (\text{abbrev. for } S \to \epsilon, S \to a, S \to b, S \to aSa, S \to bSb)$

$$G = egin{pmatrix} S > \epsilon, & S > \epsilon, & S > a, & S > b, & S > aSa, & S > bSb \end{pmatrix}$$

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

$$\mathbf{L} = \{0^{\mathbf{n}}1^{\mathbf{n}} \mid \mathbf{n} \geq 0\}$$

$$S \rightarrow \epsilon \mid 0S1$$

$$L = \{0^n 1^n \mid n \ge 0\}$$

$$S \rightarrow \epsilon \mid 0S1$$

Notation and Convention

Let
$$G = (V, T, P, S)$$
 then

- a, b, c, d, \ldots , in T (terminals)
- A, B, C, D, \ldots , in V (non-terminals)
- u, v, w, x, y, \ldots in T^* for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^*$
- \bullet X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated

Definition

Let G = (V, T, P, S) be a CFG. For strings $\alpha_1, \alpha_2 \in (V \cup T)^*$ we say α_1 derives α_2 denoted by $\alpha_1 \leadsto_{\mathbf{C}} \alpha_2$ if there exist strings β, γ, δ in $(\mathbf{V} \cup \mathbf{T})^*$ such that

17

- $\bullet \ \alpha_1 = \beta A \delta$
- $\bullet \ \alpha_2 = \beta \gamma \delta$
- $A \rightarrow \gamma$ is in P.

Examples: $S \rightsquigarrow \epsilon$, $S \rightsquigarrow 0S1$, $0S1 \rightsquigarrow 00S11$. $0S1 \rightsquigarrow 01$.

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- ullet $lpha_1 \leadsto^0 lpha_2$ if $lpha_1 = lpha_2$
- ullet $\alpha_1 \leadsto^{m{k}} \alpha_2$ if $\alpha_1 \leadsto \beta_1$ and $\beta_1 \leadsto^{m{k}-1} \alpha_2$.
- Alternative definition: $\alpha_1 \rightsquigarrow^k \alpha_2$ if $\alpha_1 \rightsquigarrow^{k-1} \beta_1$ and $\beta_1 \rightsquigarrow \alpha_2$

* is the reflexive and transitive closure of *...

$$\alpha_1 \rightsquigarrow^* \alpha_2$$
 if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k .

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- ullet $lpha_1 \leadsto^0 lpha_2$ if $lpha_1 = lpha_2$
- ullet $\alpha_1 \leadsto^{m{k}} \alpha_2$ if $\alpha_1 \leadsto \beta_1$ and $\beta_1 \leadsto^{m{k}-1} \alpha_2$.
- Alternative definition: $\alpha_1 \rightsquigarrow^k \alpha_2$ if $\alpha_1 \rightsquigarrow^{k-1} \beta_1$ and $\beta_1 \rightsquigarrow \alpha_2$

→* is the reflexive and transitive closure of →→

$$\alpha_1 \rightsquigarrow^* \alpha_2$$
 if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k .

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

"Derives" relation continued

Definition

For integer $k \geq 0$, $\alpha_1 \rightsquigarrow^k \alpha_2$ inductive defined:

- ullet $lpha_1 \leadsto^0 lpha_2$ if $lpha_1 = lpha_2$
- $\alpha_1 \rightsquigarrow^{k} \alpha_2$ if $\alpha_1 \rightsquigarrow \beta_1$ and $\beta_1 \rightsquigarrow^{k-1} \alpha_2$.
- Alternative definition: $\alpha_1 \rightsquigarrow^k \alpha_2$ if $\alpha_1 \rightsquigarrow^{k-1} \beta_1$ and $\beta_1 \rightsquigarrow \alpha_2$

→* is the reflexive and transitive closure of →→.

 $\alpha_1 \rightsquigarrow^* \alpha_2$ if $\alpha_1 \rightsquigarrow^k \alpha_2$ for some k.

Examples: $S \rightsquigarrow^* \epsilon$, $0S1 \rightsquigarrow^* 0000011111$.

Context Free Languages

Definition

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where $L(G) = \{w \in T^* \mid S \rightsquigarrow^* w\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that L = L(G).

Context Free Languages

Definition

The language generated by CFG G = (V, T, P, S) is denoted by L(G) where $L(G) = \{w \in T^* \mid S \rightsquigarrow^* w\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that L = L(G).

$$L = \{0^n 1^n \mid n \ge 0\}$$

$$S \rightarrow \epsilon \mid 0S1$$

$$L = \{0^n 1^m \mid m > n\}$$

$$L = \{w \in \{(,)\}^* \mid w \text{ is properly nested string of parenthesis}\}.$$

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

7.3

Converting regular languages into CFL

Converting regular languages into CFL

 $M = (Q, \Sigma, \delta, s, A)$: DFA for regular language L.

$$G = \left(\begin{array}{c} \bigvee_{\text{Variables}} \bigvee_{\text{Terminals}} \bigvee_{\text{Terminals}} \bigvee_{\text{Variables}} \bigvee_{\text{Start var}} \bigvee_{\text{Start$$

Conversion continued...

$$G = \left(\{A, B, C, D, E\}, \{a, b\}, \left\{ egin{array}{l} A
ightarrow aA, A
ightarrow bA, A
ightarrow aB, \ B
ightarrow bC, \ C
ightarrow aD, \ D
ightarrow bE, \ E
ightarrow aE, E
ightarrow bE, E
ightarrow arepsilon \end{array}
ight\}, A
ight)$$

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 64

The result...

Lemma

For an regular language L, there is a context-free grammar (CFG) that generates it.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.4 Some properties of CFLs

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.4.1

Closure properties of CFLS

Bad news: Canonical non-CFL

Theorem

 $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem

CFLs are not closed under intersection.

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Theorem

CFLs are closed under Kleene star.

If L is a CFL $\implies L^*$ is a CFL.

$$G_1 = (V_1, T, P_1, S_1) \text{ and } G_2 = (V_2, T, P_2, S_2)$$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Theorem

CFLs are closed under concatenation. L_1 , L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Fall 2020

31 / 64

Theorem

CFLs are closed under Kleene star.

If **L** is a CFL \implies **L*** is a CFL.

Union

$$extbf{G}_1 = (extbf{V}_1, extbf{T}, extbf{P}_1, extbf{S}_1) ext{ and } extbf{G}_2 = (extbf{V}_2, extbf{T}, extbf{P}_2, extbf{S}_2)$$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared.

Theorem

CFLs are closed under union. L_1 , L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Concatenation

Theorem

CFLs are closed under concatenation. L_1, L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Stardom (i.e, Kleene star)

Theorem

CFLs are closed under Kleene star.

If **L** is a CFL \implies **L*** is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- ullet Prove the set of regular expressions over an alphabet Σ forms a non-regular language which is context-free.

Even more bad news: CFL not closed under complement

Theorem

CFLs are not closed under complement.

Good news: Closure Properties of CFLs continued

Theorem.

If L_1 is a CFL and L_2 is regular then $L_1 \cap L_2$ is a CFL.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.4.2

Parse trees and ambiguity

Parse Trees or Derivation Trees

A tree to represent the derivation $S \rightsquigarrow^* w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Parse Trees or Derivation Trees

A tree to represent the derivation $S \rightsquigarrow^* w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Example

Har-Peled (UIUC) CS374 41 Fall 2020 41 / 64

Ambiguity in CFLs

Definition

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is unambiguous.

Example: $S \to S - S | 1 | 2 | 3$

42 / 64

Ambiguity in CFLs

- Original grammar: $S \rightarrow S S \mid 1 \mid 2 \mid 3$
- Unambiguous grammar:

Har-Peled (UIUC)

$$S \rightarrow S - C \mid 1 \mid 2 \mid 3$$

$$C \rightarrow 1 \mid 2 \mid 3$$

The grammar forces a parse corresponding to left-to-right evaluation.

(0 2)

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. **Example:** $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- Given a grammar G it is undecidable to check whether L(G) is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. Example: $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- Given a grammar G it is undecidable to check whether L(G) is inherently ambiguous. No algorithm!

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that L = L(G).

- There exist inherently ambiguous CFLs. Example: $L = \{a^n b^m c^k \mid n = m \text{ or } m = k\}$
- Given a grammar G it is undecidable to check whether L(G) is inherently ambiguous. No algorithm!

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

7.5

CFGs; Proving a grammar generate a specific language

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$L(G) = \{palindromes\} = \{w \mid w = w^R\}$$

Two directions

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow^* w$

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$L(G) = \{palindromes\} = \{w \mid w = w^R\}$$

Two directions:

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow^* w$

$L(G) \subseteq L$

Show that if $S \rightsquigarrow^* w$ then $w = w^R$

By induction on length of derivation, meaning For all $k \ge 1$, $S \rightsquigarrow^{*k} w$ implies $w = w^R$.

- If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.
- Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$
- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \to aSa \rightsquigarrow^{k-1} aua$ where w = aua.
 - And $S \rightsquigarrow^{n-1} u$ and hence IH, $u = u^R$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$L(G) \subseteq L$

Show that if $S \rightsquigarrow^* w$ then $w = w^R$

By induction on length of derivation, meaning For all $k \ge 1$, $S \rightsquigarrow^{*k} w$ implies $w = w^R$.

- If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.
- Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$
- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \to aSa \rightsquigarrow^{k-1} aua$ where w = aua.
 - And $\boldsymbol{S} \sim \boldsymbol{n-1} \boldsymbol{u}$ and hence IH, $\boldsymbol{u} = \boldsymbol{u}^{\boldsymbol{R}}$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$\mathsf{L}\subseteq\mathsf{L}(\mathsf{G})$

Show that if $w = w^R$ then $S \rightsquigarrow^* w$.

By induction on |w|That is, for all $k \ge 0$, |w| = k and $w = w^R$ implies $S \rightsquigarrow^* w$.

Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.6

CFGs normal form

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- ullet Only productions of the form A o aeta are allowed.
- ullet All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $A \rightarrow a\beta$ are allowed.
- ullet All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.7

Pushdown automatas

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

Har-Peled (UIUC) CS374 57 Fall 2020 57 / 64

Pushdown automata by example

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

7.8

Supplemental: Why $a^nb^nc^n$ is not CFL

You are bound to repeat yourself...

$$L = \{a^n b^n c^n \mid n \ge 0\}.$$

- For the sake of contradiction assume that there exists a grammar:
 G a CFG for L.
- ② T_i : minimal parse tree in G for $a^i b^i c^i$.
- \bullet $h_i = \text{height}(T_i)$: Length of longest path from root to leaf in T_i .
- ① For any integer t, there must exist an index j(t), such that $h_{j(t)} > t$.
- ① There an index j, such that $h_j > (2 * \# \text{ variables in } G)$.

61

You are bound to repeat yourself...

$$L = \{a^n b^n c^n \mid n \ge 0\}.$$

- For the sake of contradiction assume that there exists a grammar:
 G a CFG for L.
- ② T_i : minimal parse tree in G for $a^i b^i c^i$.
- \bullet $h_i = \text{height}(T_i)$: Length of longest path from root to leaf in T_i .
- For any integer t, there must exist an index j(t), such that $h_{j(t)} > t$.
- There an index j, such that $h_j > (2 * \# \text{ variables in } G)$.

Repetition in the parse tree...

Repetition in the parse tree...

$$xyzvw = a^j b^j c^j$$

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 64

Repetition in the parse tree...

$$xyzvw = a^j b^j c^j \implies xy^2 zv^2 w \in L$$

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 64

• We know:

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = ...a...b...a...b...$ Impossible, since $\tau \in L = \{a^nb^nc^n \mid n \ge 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

63 / 64

• We know:

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know:
 - $xyzvw = a^{j}b^{j}c^{j}$ |v| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that **v** contains both **a** and **b**.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know: $xyzvw = a^{j}b^{j}c^{j}$ |v| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that **v** contains both **a** and **b**.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know: $xyzvw = a^{j}b^{j}c^{j}$ |y| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that **v** contains both **a** and **b**.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know: $xyzvw = a^{j}b^{j}c^{j}$ |y| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know: $xyzvw = a^{j}b^{j}c^{j}$ |y| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.
 Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

- We know: $xyzvw = a^{j}b^{j}c^{j}$ |v| + |v| > 0.
- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that **v** contains both **a** and **b**.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.
 Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

We conclude...

Lemma

The language $\mathbf{L} = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid \mathbf{n} \geq 0\}$ is not CFL (i.e., there is no CFG for it).