Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Proving Non-regularity

Lecture 6
Thursday, September 10, 2020

ATEXed: September 1, 2020 21:20

Har-Peled (UIUC) CS374 1 Fall 2020 1/59

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.1

Not all languages are regular

Har-Peled (UIUC) Fall 2020 2/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language?

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite alphabet ¥ by
appropriate encoding

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite alphabet ¥ by
appropriate encoding

@ Hence number of regular languages is countably infinite

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite alphabet ¥ by
appropriate encoding

@ Hence number of regular languages is countably infinite

@ Number of languages is uncountably infinite

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite alphabet ¥ by
appropriate encoding

@ Hence number of regular languages is countably infinite

@ Number of languages is uncountably infinite

@ Hence there must be a non-regular language!

Har-Peled (UIUC) CS374 8 Fall 2020 3/59

L= {01 | i > 0} = {e,01,0011,000111,- -+ , }

L is not regular. —

Har-Peled (UIUC) CS374 4 Fall 2020 4/59

A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

Har-Peled (UIUC) CS374 5 Fall 2020 5/59

A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

L is not regular. \

Har-Peled (UIUC) CS374 5 Fall 2020 5/59

A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

L is not regular. \

Question: Proof?

Har-Peled (UIUC) CS374 5 Fall 2020 5/59

A Simple and Canonical Non-regular Language

L = {ok1k | i > 0} = {e,01,0011,000111,--- ,}

L is not regular.

_

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

Har-Peled (UIUC) CS374 5 Fall 2020 5/59

A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Har-Peled (UIUC) CS374 5 Fall 2020 5/59

Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = q; for some 0 < i < j < n.
That is, M is in the same state after reading 0" and O/’ where i # j.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = q; for some 0 < i < j < n.
That is, M is in the same state after reading 0" and O/’ where i # j.

M should accept 0717 but then it will also accept /17 where i # j.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = q; for some 0 < i < j < n.
That is, M is in the same state after reading 0" and O/’ where i # j.

M should accept 0717 but then it will also accept /17 where i # j.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.2

When two states are equivalent?

Har-Peled (UIUC) Fall 2020 8/59

Equivalence between states

M= (Q,%,d,s,A): DFA.
Two states p,q € Q are equivalent if for all strings w € ¥*, we have that

0*(p,w) € A < 0"(q,w) € A.

One can merge any two states that are equivalent into a single state.

Har-Peled (UIUC) CS374 9 Fall 2020 9/59

Distinguishing between states

Definition
M= (Q,%,d,s,A): DFA.
Two states p,q € @ are distinguishable if there exists a string w € ¥*, such that

(p,w) €A and 6(q,w) & A.

*(p,w) & A and 6%(q,w) € A.

Har-Peled (UIUC) CS374 10 Fall 2020 10 /59

Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Har-Peled (UIUC) CS374 11 Fall 2020 11/59

Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Definition
Two strings u, w € L* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Har-Peled (UIUC) CS374 11 Fall 2020 11/59

Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Definition

Two strings u, w € L* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Definition (Direct restatement)

Two prefixes u, w € ¥* are distinguishable for a language L if there exists a string x,
such that ux € L and wx & L

Har-Peled (UIUC) CS374 11 Fall 2020 11/59

Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Definition

Two strings u, w € L* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Definition (Direct restatement)

Two prefixes u, w € ¥* are distinguishable for a language L if there exists a string x,
such that ux € L and wx & L (or ux ¢ L and wx € L).

Har-Peled (UIUC) CS374 11 Fall 2020 11/59

Distinguishable means different states

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Reminder: Vx = d*(s,x) € Q and Vy = §*(s,y) € Q

Har-Peled (UIUC) CS374 12 Fall 2020 12 /59

Proof by a figure

Possible Not possible

w
X | o(s,x) o
“~ Y .

Har-Peled (UIUC) CS374 13 Fall 2020 13 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.
Assume for the sake of contradiction that Vx = Vy.

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.
By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx, w)

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

=> A D Vyw & A. Impossible!

W

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

=> A D Vyw & A. Impossible!

Assumption that Vx = Vy is false. O]

v

Har-Peled (UIUC) CS374 14 Fall 2020 14 /59

Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.

Har-Peled (UIUC) CS374 15 Fall 2020 15 /59

Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.

© Let L be a regular language, and let wy, ..., wi be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

Har-Peled (UIUC) CS374 15 Fall 2020 15 /59

Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.

© Let L be a regular language, and let wy, ..., wi be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

@ Prove that {0¥1¥ | k > 0} is not regular.

Har-Peled (UIUC) CS374 15 Fall 2020 15 /59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.2.1

Old version: Proving non-regularity

Har-Peled (UIUC) Fall 2020 17 /59

Show non-regularity

Proof structure for showing a language L is not regular:
@ For sake of contradiction, assume it is regular.
@ There exists a finite DFA M = (Q, ¥, d, s, A) that accepts the language.
© Showing that there are prefix strings wy, ws, . . . that are all distinguishable.
© Define g = Vw; = §*(s,w;), fori =1,...,00.
@ Vi,j:i#j: Since w; and w; are distinguishable = q; # g;.
@ M has infinite number of states. Impossible!

@ Contradiction to L being regular.

Har-Peled (UIUC) CS374 18 Fall 2020 18 /59

How to prove non-regularity?

Claim: Language L is not regular.

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s, xw) € A and 6*(s, yw) & A then §*(s, x) # 6*(s, y).

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s,xw) € A and 6*(s, yw) ¢ A then 6*(s, x) # 0*(s,y).

Proof.
Assume for the sake of contradiction that 6*(s, x) = d*(s, y).

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s,xw) € A and 6*(s, yw) ¢ A then 6*(s, x) # 0*(s,y).

Proof.

Assume for the sake of contradiction that 6*(s, x) = d*(s, y).
== A S §*(s,xw) = §*(6*(s, x), w)

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s,xw) € A and 6*(s, yw) ¢ A then 6*(s, x) # 0*(s,y).

Proof.

Assume for the sake of contradiction that 6*(s, x) = d*(s, y).
= A D §*(s,xw) = 6*(6*(s, x), w) = 6*(6*(s, ¥), w)

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s,xw) € A and 6*(s, yw) ¢ A then 6*(s, x) # 0*(s,y).

Proof.

Assume for the sake of contradiction that 6*(s, x) = d*(s, y).
= A D §*(s,xw) = §*(6*(s, x), w) = 6*(0*(s,y), w) = 6*(s,yw) ¢ A

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x, y, w € 2*.
=(Q,%,d,s,A): DFA for language L C ¥*.
If5*(s xw) € A and 6*(s,yw) & A then §*(s, x) # 6*(s,y).

Assume for the sake of contradiction that 6*(s, x) = d*(s, y).
== A3 (s, xw) = 67(8%(s, x), w) = 6"(6%(s, y), w) = 07(s, yw) & A
= A D §*(s,xw) & A. Impossible! O

Har-Peled (UIUC) CS374 19 Fall 2020 19 /59

Generalizing the argument

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.

Har-Peled (UIUC) CS374 20 Fall 2020 20 /59

Generalizing the argument

Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.

Har-Peled (UIUC) CS374 20 Fall 2020 20 /59

Generalizing the argument

Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.

Example: If i # j, 0° and O/ are distinguishable with respect to L = {0k1* | k > 0}

Har-Peled (UIUC) CS374 20 Fall 2020 20 /59

Generalizing the argument

Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.

Example: If i # j, 0° and O/ are distinguishable with respect to L = {0k1* | k > 0}

Example: 000 and 0000 are indistinguishable with respect to the language
L = {w | w has 00 as a substring}.

Har-Peled (UIUC) CS374 20 Fall 2020 20 /59

Wee Lemma

Suppose L = L(M) for some DFA M = (Q, %, d,s, A) and suppose x,y are
distinguishable with respect to L. Then §*(s, x) # 6*(s, y).

Har-Peled (UIUC) CS374 21 Fall 2020 21/59

Wee Lemma

Lemma

Suppose L = L(M) for some DFA M = (Q, %, d,s, A) and suppose x,y are
distinguishable with respect to L. Then §*(s, x) # 6*(s, y).

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If *(s, x) = d*(s,y)
then M will either accept both the strings xw, yw, or reject both. But exactly one of
them is in L, a contradiction.]

v

Har-Peled (UIUC) CS374 21 Fall 2020 21/59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.3

Fooling sets: Proving non-regularity

Har-Peled (UIUC) Fall 2020 23 /59

Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Har-Peled (UIUC) CS374 24 Fall 2020 24 /59

Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language L = {01k | kK > 0}.

Har-Peled (UIUC) CS374 24 Fall 2020 24 /59

Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language L = {01k | kK > 0}.

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.

Har-Peled (UIUC) CS374 24 Fall 2020 24 /59

Recall

Already proved the following lemma:

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € L* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s, x).

Har-Peled (UIUC) CS374 25 Fall 2020 25 /59

Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.
Let M = (Q, %, d,s,A) be any DFA that accepts L.

Har-Peled (UIUC) CS374 26 Fall 2020 26 /59

Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.
Let M = (Q, %, d,s,A) be any DFA that accepts L.
Let gi = Vw; = d*(s, x;).

Har-Peled (UIUC) CS374 26 Fall 2020 26 /59

Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.

Let M = (Q, %, d,s,A) be any DFA that accepts L.
Let gi = Vw; = d*(s, x;).

By lemma q; # qj for all i # j.

As such, |@] 2 [{dtr- > @] = [{Wis- -, wir}| = |F]. s

Har-Peled (UIUC) CS374 26 Fall 2020 26 /59

Infinite Fooling Sets
If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are

distinguishable.
Assume for contradiction that 3 M a DFA for L.

Har-Peled (UIUC) CS374 27 Fall 2020 27/59

Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.

Har-Peled (UIUC) CS374 27 Fall 2020 27/59

Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic f| n |te automata. But M not finite. (]

Har-Peled (UIUC) CS374 27 Fall 2020 27/59

o {01k | k >0}

Har-Peled (UIUC) CS374 28 Fall 2020 28 /59

o {01k | k >0}
o {bitstrings with equal number of Os and 1s}

Har-Peled (UIUC) CS374 28 Fall 2020 28 /59

o {01k | k >0}
o {bitstrings with equal number of Os and 1s}
o {0kK1* | k # £}

Har-Peled (UIUC) CS374 28 Fall 2020 28 /59

Harder example: The language of squares is not regular

{0¥ | k >0}

Har-Peled (UIUC) CS374 29 Fall 2020 29 /59

Really hard: Primes are not regular

An exercise left for your enjoyment

{0" | k is a prime number}
Hints:
© Probably easier to prove directly on the automata.
© There are infinite number of prime numbers.
© For every n > 0, observe that n!,n! +1,...,n! + n are all composite — there are
arbitrarily big gaps between prime numbers.

Har-Peled (UIUC) CS374 30 Fall 2020 30/59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.3.1
Exponential gap in number of states
between DFA and NFA sizes

Har-Peled (UIUC) 2 Fall 2020 32/59

Exponential gap between NFA and DFA size

L, ={w € {0,1}* | w has a 1 located 4 positions from the end}

Har-Peled (UIUC) Fall 2020 33/59

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}

Har-Peled (UIUC) CS374 34 Fall 2020 34 /59

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Har-Peled (UIUC) CS374 34 Fall 2020 34 /59

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. \

Har-Peled (UIUC) CS374 34 Fall 2020 34 /59

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. l

F ={w € {0,1}* : |w| = k} is a fooling set of size 2k for L.

Why?

Har-Peled (UIUC) CS374 34 Fall 2020 34 /59

Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. l

F ={w € {0,1}* : |w| = k} is a fooling set of size 2k for L.

Why?
@ Suppose a;a;...ax and b1 b, ... by are two distinct bitstrings of length k
@ Let i be first index where a; # b;
e y = 0k—i—1 s a distinguishing suffix for the two strings

Har-Peled (UIUC) CS374 34 Fall 2020 34 /59

How do pick a fooling set

How do we pick a fooling set F7
o If x,y are in F and x # y they should be distinguishable! Of course.

@ All strings in F except maybe one should be prefixes of strings in the language L.
For example if L = {0¥1k | k > 0} do not pick 1 and 10 (say). Why?

Har-Peled (UIUC) CS374 35 Fall 2020 35/59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.4

Closure properties: Proving non-regularity

Har-Peled (UIUC) Fall 2020 37/59

Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

Har-Peled (UIUC) CS374 38 Fall 2020 38/59

Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H = H N L(0*1*)
Claim: The above and the fact that L is non-regular implies L is non-regular. Why?

Har-Peled (UIUC) CS374 38 Fall 2020 38/59

Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H = H N L(0*1*)
Claim: The above and the fact that L is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since L(0*1*) is regular, and regular languages are closed
under intersection, H’ also would be regular. But we know H’ is not regular, a
contradiction.

Har-Peled (UIUC) CS374 38 Fall 2020 38/59

Non-regularity via closure properties

General recipe:

' SR
KNOWN Apply
REGULAR closure [I—non-regular
properties
./

UNKNOWN L'_)

Har-Peled (UIUC) CS374 39 Fall 2020 39/59

Proving non-regularity: Summary

@ Method of distinguishing suffixes. To prove that L is non-regular find an infinite
fooling set.

@ Closure properties. Use existing non-regular languages and regular languages to
prove that some new language is non-regular.

@ Pumping lemma. We did not cover it but it is sometimes an easier proof technique
to apply, but not as general as the fooling set technique.

Har-Peled (UIUC) CS374 40 Fall 2020 40 /59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.5
Myhill-Nerode Theorem

Har-Peled (UIUC) 2 Fall 2020 42 /59

One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal
automata, and it can be computed efficiently once any DFA is given for L.

Har-Peled (UIUC) CS374 43 Fall 2020 43 /59

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.5.1
Myhill-Nerode Theorem: Equivalence

between strings

Har-Peled (UIUC) Fall 2020 44 /59

Indistinguishability

Recall:

Definition

For a language L over ¥~ and two strings x, y € X* we say that x and y are
distinguishable with respect to L if there is a string w € ¥* such that exactly one of
xw, yw is in L. x,y are indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in X* as follows: x =, y iff
x and y are indistinguishable with respect to L.

Har-Peled (UIUC) CS374 45 Fall 2020 45/59

Indistinguishability

Recall:

Definition

For a language L over ¥~ and two strings x, y € X* we say that x and y are
distinguishable with respect to L if there is a string w € ¥* such that exactly one of
xw, yw is in L. x,y are indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in X* as follows: x =, y iff
x and y are indistinguishable with respect to L.

Definition

X =, y means thatVw € Y*: xw € L <= yw € L.
In words: x is equivalent to y under L.

Har-Peled (UIUC) CS374 45 Fall 2020 45/59

Example: Equivalence classes

Har-Peled (UIUC) CS374 46 Fall 2020 46 /59

Indistinguishability

= Is an equivalence relation over ¥_*. \

Proof.

Q Reflexive: Vx € X*: Vw € X*: xw € L <— xw € L.

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

= Is an equivalence relation over ¥_*. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwelr ywel < xwel

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer:ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L
— Vwer: xwel <— zwel

V.

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L
— Vwer: xwel <— zwel
— X = Z.
[]

vy

Har-Peled (UIUC) CS374 47 Fall 2020 47 /59

Equivalences over automatas...

Claim (Just proved.)

= Is an equivalence relation over ¥*.

Therefore, =, partitions 2* into a collection of equivalence classes.

Definition

L: A language For a string x € ¥*, let

[X] =[xl ={y €XT* | x =Ly}
be the equivalence class of x according to L.

Definition

[L] = {[x]. | x € £*} is the set of equivalence classes of L.

Har-Peled (UIUC) CS374 48 Fall 2020 48/59

Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

X=1y = Vwelr: xwel < ywel

Har-Peled (UIUC) CS374 49 Fall 2020 49 /59

Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

Har-Peled (UIUC) CS374 49 Fall 2020 49 /59

Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XZLy =

Har-Peled (UIUC) CS374 49 Fall 2020 49 /59

Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XFZy = dwer: xw e landyw &€ L

Har-Peled (UIUC) CS374 49 Fall 2020 49 /59

Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.
X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XFZy = dwer: xw e landyw &€ L
=—> x and y are distinguishable for L.

Har-Peled (UIUC) CS374 49 Fall 2020 49 /59

All strings arriving at a state are in the same class

M= (Q,%,d,s,A) a DFA for a language L.
Foranyq € A, let L ={w € ¥* | Vw = d*(s, w) = g}.
Then, there exists a string x, such that Ly C [x].

Har-Peled (UIUC) CS374 50 Fall 2020 50 /59

An inefficient automata

Har-Peled (UIUC) CS374 il Fall 2020 51 /59

THE END

(for now)

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

6.5.2
Stating and proving the Myhill-Nerode

Theorem

Har-Peled (UIUC) Fall 2020 53/59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

If =1 has infinite number of equivalence classes == 3 infinite fooling set for L.
== L is not regular.

Har-Peled (UIUC) CS374 54 Fall 2020 54 /59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

[x] = [y]

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’
= [xa|. = [ya].. O

Har-Peled (UIUC) CS374 55 Fall 2020 55/59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.
Accept states: A = {[x]. | x € L}.

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.
Transition function: &([x]., a) = [xa]..

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.

Transition function: &([x]., a) = [xa]..

M= (Q,%,d,s,A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.]

Har-Peled (UIUC) CS374 56 Fall 2020 56 /59

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular <> =, has a finite number of equivalence classes.
If = is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

A language L is non-regular if and only if there is an infinite fooling set F for L. l

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M’ such that L(M) = L(M’) and M’ has the fewest possible states among all such
DFAs.

Har-Peled (UIUC) CS374 57 Fall 2020 57 /59

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.

Har-Peled (UIUC) CS374 58 Fall 2020 58 /59

Exercise

@ Given two DFAs My, M, describe an efficient algorithm to decide if
L(Ml) = L(Mz)-

@ Given DFA M, and two states g, @’ of M, show an efficient algorithm to decide if
q and q’ are distinguishable. (Hint: Use the first part.)

© Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.

Har-Peled (UIUC) CS374 59 Fall 2020 59 /59

	Not all languages are regular
	When two states are equivalent?
	Old version: Proving non-regularity

	Fooling sets: Proving non-regularity
	Exponential gap in number of states between DFA and NFA sizes

	Closure properties: Proving non-regularity
	Myhill-Nerode Theorem
	Myhill-Nerode Theorem: Equivalence between strings
	Stating and proving the Myhill-Nerode Theorem

