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6.1

Not all languages are regular
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Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language?
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Regular Languages, DFAs, NFAs

Languages accepted by DF'As, NFAs, and regular expressions are the same. \

Question: Is every language a regular language? No.

@ Each DFA M can be represented as a string over a finite alphabet ¥ by
appropriate encoding

@ Hence number of regular languages is countably infinite

@ Number of languages is uncountably infinite

@ Hence there must be a non-regular language!
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L= {01 | i > 0} = {e,01,0011,000111,- -+ , }

L is not regular. —
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A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}
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A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

L is not regular. \

Question: Proof?
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A Simple and Canonical Non-regular Language

L = {ok1k | i > 0} = {e,01,0011,000111,--- ,}

L is not regular.

_

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.
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A Simple and Canonical Non-regular Language

L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in
input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = q; for some 0 < i < j < n.
That is, M is in the same state after reading 0" and O/’ where i # j.
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that L(M) = L.
o Let M =(Q,{0,1},9,s,A) where |Q| = n.
Consider strings €, 0, 00, 000, - - - , 0" total of n + 1 strings.

What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = q; for some 0 < i < j < n.
That is, M is in the same state after reading 0" and O/’ where i # j.

M should accept 0717 but then it will also accept /17 where i # j.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.
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THE END

(for now)
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6.2

When two states are equivalent?
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Equivalence between states

M= (Q,%,d,s,A): DFA.
Two states p,q € Q are equivalent if for all strings w € ¥*, we have that

0*(p,w) € A < 0"(q,w) € A.

One can merge any two states that are equivalent into a single state.
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Distinguishing between states

Definition
M= (Q,%,d,s,A): DFA.
Two states p,q € @ are distinguishable if there exists a string w € ¥*, such that

*(p,w) €A and  6*(q,w) & A.

*(p,w) & A and  6%(q,w) € A.
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Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).
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Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).
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Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Definition

Two strings u, w € L* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Definition (Direct restatement)

Two prefixes u, w € ¥* are distinguishable for a language L if there exists a string x,
such that ux € L and wx & L
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Distinguishable prefixes

M = (Q,%,8,s,A): DFA
Idea: Every string w € T* defines a state Vw = §*(s, w).

Definition

Two strings u, w € L* are distinguishable for M (or L(M)) if Vu and Vw are
distinguishable.

Definition (Direct restatement)

Two prefixes u, w € ¥* are distinguishable for a language L if there exists a string x,
such that ux € L and wx & L (or ux ¢ L and wx € L).
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Distinguishable means different states

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Reminder: Vx = d*(s,x) € Q and Vy = §*(s,y) € Q
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Proof by a figure

Possible Not possible

w
X | o(s,x) o
“~ Y .
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Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.
Assume for the sake of contradiction that Vx = Vy.

W
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Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx, w)
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Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

W
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Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

=> A D Vyw & A. Impossible!

W
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Distinguishable strings means different states: Proof

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € ¥* are distinguishable, then Vx # Vy.

Proof.

Assume for the sake of contradiction that Vx = Vy.

By assumption 3w € ¥* such that Vxw € A and Vyw ¢ A.
= A D Vxw = §*(s, xw) = §*(Vx,w)= 6*(Vy, w)

= 0*(s,yw) = Vyw ¢ A,

=> A D Vyw & A. Impossible!

Assumption that Vx = Vy is false. O]

v
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Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.
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Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.

© Let L be a regular language, and let wy, ..., wi be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.
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Review questions...

@ Prove for any i # j then 0 and O/ are distinguishable for the language
{ok1k | k > 0}.

© Let L be a regular language, and let wy, ..., wi be strings that are all pairwise
distinguishable for L. Prove that any DFA for L must have at least k states.

@ Prove that {0¥1¥ | k > 0} is not regular.
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THE END

(for now)
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6.2.1

Old version: Proving non-regularity
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Show non-regularity

Proof structure for showing a language L is not regular:
@ For sake of contradiction, assume it is regular.
@ There exists a finite DFA M = (Q, ¥, d, s, A) that accepts the language.
© Showing that there are prefix strings wy, ws, . . . that are all distinguishable.
© Define g = Vw; = §*(s,w;), fori =1,...,00.
@ Vi,j:i#j: Since w; and w; are distinguishable = q; # g;.
@ M has infinite number of states. Impossible!

@ Contradiction to L being regular.
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How to prove non-regularity?

Claim: Language L is not regular.
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How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.
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How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
M= (Q,%,d,s,A): DFA for language L C ¥*.
If 6*(s, xw) € A and 6*(s, yw) & A then §*(s, x) # 6*(s, y).
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How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x,y, w € ¥*.
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How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.
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M= (Q,%,d,s,A): DFA for language L C ¥*.
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How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show # states in any DFA M for language L has infinite number of states.

Consider three strings x, y, w € 2*.
=(Q,%,d,s,A): DFA for language L C ¥*.
If5*(s xw) € A and 6*(s,yw) & A then §*(s, x) # 6*(s,y).

Assume for the sake of contradiction that 6*(s, x) = d*(s, y).
== A3 (s, xw) = 67(8%(s, x), w) = 6"(6%(s, y), w) = 07(s, yw) & A
= A D §*(s,xw) & A. Impossible! O
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Generalizing the argument

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
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Generalizing the argument

Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.
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Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.

Example: If i # j, 0° and O/ are distinguishable with respect to L = {0k1* | k > 0}
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Generalizing the argument

Definition

For a language L over ¥ and two strings x,y € ¥*, x and y are distinguishable with
respect to L if there is a string w € L* such that exactly one of xw, yw is in L.
X, y are indistinguishable with respect to L if there is no such w.

Example: If i # j, 0° and O/ are distinguishable with respect to L = {0k1* | k > 0}

Example: 000 and 0000 are indistinguishable with respect to the language
L = {w | w has 00 as a substring}.
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Wee Lemma

Suppose L = L(M) for some DFA M = (Q, %, d,s, A) and suppose x,y are
distinguishable with respect to L. Then §*(s, x) # 6*(s, y).

Har-Peled (UIUC) CS374 21 Fall 2020 21/59



Wee Lemma

Lemma

Suppose L = L(M) for some DFA M = (Q, %, d,s, A) and suppose x,y are
distinguishable with respect to L. Then §*(s, x) # 6*(s, y).

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If *(s, x) = d*(s,y)
then M will either accept both the strings xw, yw, or reject both. But exactly one of
them is in L, a contradiction. ]

v
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THE END

(for now)
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6.3

Fooling sets: Proving non-regularity
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Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.
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Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language L = {01k | kK > 0}.
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Fooling Sets

Definition

For a language L over ¥ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language L = {01k | kK > 0}.

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.
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Recall

Already proved the following lemma:

L: regular language.
M= (Q,%,d,s,A): DFA for L.
If x,y € L* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s, x).
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Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.
Let M = (Q, %, d,s,A) be any DFA that accepts L.
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Proof of theorem
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L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.
Let M = (Q, %, d,s,A) be any DFA that accepts L.
Let gi = Vw; = d*(s, x;).
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Proof of theorem

Theorem (Reworded.)

L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let F = {wy, wy, ..., w,) be the fooling set.

Let M = (Q, %, d,s,A) be any DFA that accepts L.
Let gi = Vw; = d*(s, x;).

By lemma q; # qj for all i # j.

As such, |@] 2 [{dtr- > @] = [{Wis- -, wir}| = |F]. s
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Infinite Fooling Sets
If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are

distinguishable.
Assume for contradiction that 3 M a DFA for L.
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Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.
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Infinite Fooling Sets

If L has an infinite fooling set F then L is not regular. \

Proof.

Let wy, wo, ... C F be an infinite sequence of strings such that every pair of them are
distinguishable.

Assume for contradiction that 3 M a DFA for L.

Let F; = {wq,...,w;}.

By theorem, # states of M > |F;| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic f| n |te automata. But M not finite. (]
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o {01k | k >0}
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o {01k | k >0}
o {bitstrings with equal number of Os and 1s}
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o {01k | k >0}
o {bitstrings with equal number of Os and 1s}
o {0kK1* | k # £}
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Harder example: The language of squares is not regular

{0¥ | k >0}
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Really hard: Primes are not regular

An exercise left for your enjoyment

{0" | k is a prime number}
Hints:
© Probably easier to prove directly on the automata.
© There are infinite number of prime numbers.
© For every n > 0, observe that n!,n! +1,...,n! + n are all composite — there are
arbitrarily big gaps between prime numbers.
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THE END

(for now)
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6.3.1
Exponential gap in number of states
between DFA and NFA sizes
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Exponential gap between NFA and DFA size

L, ={w € {0,1}* | w has a 1 located 4 positions from the end}

Har-Peled (UIUC) Fall 2020  33/59



Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. \
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. l

F ={w € {0,1}* : |w| = k} is a fooling set of size 2k for L.

Why?
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Every DFA that accepts Ly has at least 2% states. l

F ={w € {0,1}* : |w| = k} is a fooling set of size 2k for L.

Why?
@ Suppose a;a;...ax and b1 b, ... by are two distinct bitstrings of length k
@ Let i be first index where a; # b;
e y = 0k—i—1 s a distinguishing suffix for the two strings
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How do pick a fooling set

How do we pick a fooling set F7
o If x,y are in F and x # y they should be distinguishable! Of course.

@ All strings in F except maybe one should be prefixes of strings in the language L.
For example if L = {0¥1k | k > 0} do not pick 1 and 10 (say). Why?
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THE END

(for now)
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6.4

Closure properties: Proving non-regularity
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Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?
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Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H = H N L(0*1*)
Claim: The above and the fact that L is non-regular implies L is non-regular. Why?
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Non-regularity via closure properties

H = {bitstrings with equal number of Os and 1s}
H' = {0k1% | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H = H N L(0*1*)
Claim: The above and the fact that L is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since L(0*1*) is regular, and regular languages are closed
under intersection, H’ also would be regular. But we know H’ is not regular, a
contradiction.
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Non-regularity via closure properties

General recipe:

' SR
KNOWN Apply
REGULAR closure [ I—non-regular
properties
./

UNKNOWN L'_)
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Proving non-regularity: Summary

@ Method of distinguishing suffixes. To prove that L is non-regular find an infinite
fooling set.

@ Closure properties. Use existing non-regular languages and regular languages to
prove that some new language is non-regular.

@ Pumping lemma. We did not cover it but it is sometimes an easier proof technique
to apply, but not as general as the fooling set technique.
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THE END

(for now)
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6.5
Myhill-Nerode Theorem
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One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal
automata, and it can be computed efficiently once any DFA is given for L.
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6.5.1
Myhill-Nerode Theorem: Equivalence

between strings
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Indistinguishability

Recall:

Definition

For a language L over ¥~ and two strings x, y € X* we say that x and y are
distinguishable with respect to L if there is a string w € ¥* such that exactly one of
xw, yw is in L. x,y are indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in X* as follows: x =, y iff
x and y are indistinguishable with respect to L.
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Indistinguishability

Recall:

Definition

For a language L over ¥~ and two strings x, y € X* we say that x and y are
distinguishable with respect to L if there is a string w € ¥* such that exactly one of
xw, yw is in L. x,y are indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in X* as follows: x =, y iff
x and y are indistinguishable with respect to L.

Definition

X =, y means thatVw € Y*: xw € L <= yw € L.
In words: x is equivalent to y under L.
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Example: Equivalence classes
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Indistinguishability

= Is an equivalence relation over ¥_*. \

Proof.

Q Reflexive: Vx € X*: Vw € X*: xw € L <— xw € L.

V.
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Indistinguishability

= Is an equivalence relation over ¥_*. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

V.
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Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwelr ywel < xwel

V.
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Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.

Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.

V.
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Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer:ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L

V.
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Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L
— Vwer: xwel <— zwel

V.
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Indistinguishability

=, is an equivalence relation over L *. \

Proof.

Q Reflexive: Vx e X" Vw e X" xw e L < xw e lL. — x =, x.
Q@ Symmetry: x =, ythenVw € Y*: xw € L <— yw e L
Vwer: ywel < xwel — y=,x.
© Transitivity: x =, yandy =, z
Vwelr: xwel < ywelandVwelr* ywel < zw e L
— Vwer: xwel <— zwel
— X = Z.
[]

vy
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Equivalences over automatas...

Claim (Just proved.)

= Is an equivalence relation over ¥*.

Therefore, =, partitions 2* into a collection of equivalence classes.

Definition

L: A language For a string x € ¥*, let

[X] =[xl ={y €XT* | x =Ly}
be the equivalence class of x according to L.

Definition

[L] = {[x]. | x € £*} is the set of equivalence classes of L.
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Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

X=1y = Vwelr: xwel < ywel
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Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.
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Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XZLy =
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Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.

X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XFZy = dwer: xw e landyw &€ L
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Strings in the same equivalence class are indistinguishable

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

Proof.
X=1y = Vwelr: xwel < ywel
x and y are indistinguishable for L.

XFZy = dwer: xw e landyw &€ L
=—> x and y are distinguishable for L.
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All strings arriving at a state are in the same class

M= (Q,%,d,s,A) a DFA for a language L.
Foranyq € A, let L ={w € ¥* | Vw = d*(s, w) = g}.
Then, there exists a string x, such that Ly C [x].
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An inefficient automata
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THE END

(for now)
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6.5.2
Stating and proving the Myhill-Nerode

Theorem
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Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.
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Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.
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Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
X =,y <= X,y are indistinguishable for L.

If = is finite with n equivalence classes then there is a fooling set F of size n for L.

If =1 has infinite number of equivalence classes == 3 infinite fooling set for L.
== L is not regular.
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Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

[x] = [y]
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Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
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Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’
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Equivalence classes as automata

For all x,y € ¥*, if [x]. = [y]., then for any a € ¥, we have [xa], = [ya],.

x| =[y] = Vwer xwel < ywelL
— Vw eX* xaw’' € L <= yaw' €L /] w=aw’
= [xa|. = [ya].. O
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]
Start state: s = [¢],.
Accept states: A = {[x]. | x € L}.
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.
Transition function: &([x]., a) = [xa]..
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Set of equivalence classes

If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.

Set of states: Q = [L]

Start state: s = [¢],.

Accept states: A = {[x]. | x € L}.

Transition function: &([x]., a) = [xa]..

M= (Q,%,d,s,A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L. ]
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular <> =, has a finite number of equivalence classes.
If = is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

A language L is non-regular if and only if there is an infinite fooling set F for L. l

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M’ such that L(M) = L(M’) and M’ has the fewest possible states among all such
DFAs.
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What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.
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Exercise

@ Given two DFAs My, M, describe an efficient algorithm to decide if
L(Ml) = L(Mz)-

@ Given DFA M, and two states g, @’ of M, show an efficient algorithm to decide if
q and q’ are distinguishable. (Hint: Use the first part.)

© Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.
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