Algorithms & Models of Computation CS/ECE 374, Fall 2020

Proving Non-regularity

Lecture 6 Thursday, September 10, 2020

 $\begin{tabular}{l} \verb|ETE| Xed: September 1, 2020 & 21:20 \end{tabular}$

Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.1 Not all languages are regular

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- ullet Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- ullet Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is <u>uncountably infinite</u>
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A direct proof

$$L = \{0^{i}1^{i} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

$$L = \{0^k 1^k \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^{k}1^{k} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize **L** seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^k 1^k \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^k 1^k \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$$L = \{0^k 1^k \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n+1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^i 1^i$ but then it will also accept $0^j 1^i$ where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Har-Peled (UIUC) CS374 6 Fall 2020 6/59

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

6.2

When two states are equivalent?

Equivalence between states

Definition

 $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p, w) \in A \iff \delta^*(q, w) \in A.$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition

$$M = (Q, \Sigma, \delta, s, A)$$
: DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

$$\delta^*(p, w) \in A$$
 and $\delta^*(q, w) \notin A$.

or

$$\delta^*(p, w) \notin A$$
 and $\delta^*(q, w) \in A$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $\mathbf{u}, \mathbf{w} \in \Sigma^*$ are distinguishable for \mathbf{M} (or $\mathbf{L}(\mathbf{M})$) if $\nabla \mathbf{u}$ and $\nabla \mathbf{w}$ are distinguishable.

Definition (Direct restatement)

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Distinguishable means different states

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $abla x = \delta^*(s,x) \in Q$ and $abla y = \delta^*(s,y) \in Q$

Proof by a figure

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$

$$=\delta^*(s,yw)=
abla yw
otin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$

$$=\delta^*(s,yw)=
abla yw
otin A$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$

$$=\delta^*(s,yw)=
abla yw\notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni
abla xw = \delta^*(s,xw) = \delta^*(
abla x,w) = \delta^*(
abla y,w)$

$$=\delta^*(s,yw)=
abla yw\notin A.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni
abla xw = \delta^*(s,xw) = \delta^*(
abla x,w) = \delta^*(
abla y,w)$

$$=\delta^*(s,yw)=oldsymbol{
abla}yw
otin oldsymbol{A}.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni
abla xw = \delta^*(s,xw) = \delta^*(
abla x,w) = \delta^*(
abla y,w)$

$$=\delta^*(s,yw)=oldsymbol{
abla}yw
otinoldsymbol{A}.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \notin A$.

$$\implies$$
 $A \ni
abla xw = \delta^*(s,xw) = \delta^*(
abla x,w) = \delta^*(
abla y,w)$

$$=\delta^*(s,yw)=oldsymbol{
abla}yw
otin oldsymbol{A}.$$

 \implies $A \ni \nabla yw \notin A$. Impossible!

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k 1^k \mid k \geq 0\}$.
- 2 Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
- ① Prove that $\{0^k 1^k \mid k \ge 0\}$ is not regular.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k 1^k \mid k \geq 0\}$.
- 2 Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
- Prove that $\{0^k 1^k \mid k \ge 0\}$ is not regular.

Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^k 1^k \mid k \geq 0\}$.
- 2 Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
- Prove that $\{0^k 1^k \mid k \ge 0\}$ is not regular.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

6.2.1

Old version: Proving non-regularity

Show non-regularity

Proof structure for showing a language L is not regular:

- For sake of contradiction, assume it is regular.
- ② There exists a finite DFA $M = (Q, \Sigma, \delta, s, A)$ that accepts the language.
- **3** Showing that there are prefix strings w_1, w_2, \ldots that are all distinguishable.
- $lackbox{0}$ Define $q_i =
 abla w_i = \delta^*(s, w_i)$, for $i = 1, \ldots, \infty$.
- \emptyset $\forall i, j : i \neq j$: Since w_i and w_j are distinguishable $\implies q_i \neq q_j$.
- M has infinite number of states. Impossible!
- Contradiction to L being regular.

18

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$

$$\implies A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$$

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s,xw) \in A$ and $\delta^*(s,yw) \notin A$ then $\delta^*(s,x) \neq \delta^*(s,y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$

$$\implies A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$$

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$

$$\implies A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$$

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$.

$$\implies$$
 $A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$

 $\implies A \ni \delta^*(s, xw) \notin A$. Impossible!

19 / 59

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$.

$$\implies$$
 $A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$

 $\implies A \ni \delta^*(s, xw) \notin A$. Impossible!

19 / 59

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$.

$$\implies$$
 $A \ni \delta^*(s, xw) = \delta^*(\delta^*(s, x), w) = \delta^*(\delta^*(s, y), w) = \delta^*(s, yw) \notin A$

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s,xw) \in A$ and $\delta^*(s,yw) \notin A$ then $\delta^*(s,x) \neq \delta^*(s,y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$.

$$\implies$$
 $extcolor{black}{A}
ightarrow \delta^*(s,xw) = \delta^*(\delta^*(s,x),w) = \delta^*(s,yw)
otin \delta^*(s,yw)$

 $\implies A \ni \delta^*(s, xw) \notin A$. Impossible!

19 / 59

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$.

If $\delta^*(s,xw) \in A$ and $\delta^*(s,yw) \notin A$ then $\delta^*(s,x) \neq \delta^*(s,y)$.

Proof.

Assume for the sake of contradiction that $\delta^*(s,x) = \delta^*(s,y)$.

$$\implies$$
 $extcolor{black}{A}
ightarrow \delta^*(s,xw) = \delta^*(\delta^*(s,x),w) = \delta^*(\delta^*(s,y),w) = \delta^*(s,yw)
otin extcolor{black}{A}$

Definition

For a language L over Σ and two strings $x,y\in\Sigma^*$, x and y are distinguishable with respect to L if there is a string $w\in\Sigma^*$ such that exactly one of xw,yw is in L.

Example: If $i \neq i$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k > 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{ w \mid w \text{ has } 00 \text{ as a substring} \}.$

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{w \mid w \text{ has } 00 \text{ as a substring}\}.$

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{w \mid w \text{ has } 00 \text{ as a substring}\}.$

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \geq 0\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L = \{ w \mid w \text{ has } 00 \text{ as a substring} \}.$

Wee Lemma

Lemma

Suppose L = L(M) for some DFA $M = (Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^*(s, x) = \delta^*(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

Wee Lemma

Lemma

Suppose L = L(M) for some DFA $M = (Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^*(s, x) = \delta^*(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

6.3

Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \geq 0\}$.

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \geq 0\}$.

Theorem

Suppose \mathbf{F} is a fooling set for \mathbf{L} . If \mathbf{F} is finite then there is no DFA \mathbf{M} that accepts \mathbf{L} with less than $|\mathbf{F}|$ states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \geq 0\}$.

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Recall

Already proved the following lemma:

Lemma

L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

```
Let F = \{w_1, w_2, \dots, w_m\} be the fooling set.
```

Let
$$M = (Q, \Sigma, \delta, s, A)$$
 be any DFA that accepts L .

Let
$$q_i = \nabla w_i = \delta^*(s, x_i)$$
.

By lemma
$$q_i \neq q_i$$
 for all $i \neq j$.

As such,
$$|Q| \ge |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |F|$$
.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

```
Let F = \{w_1, w_2, \dots, w_m\} be the fooling set.
```

Let
$$M = (Q, \Sigma, \delta, s, A)$$
 be any DFA that accepts L .

Let
$$q_i = \nabla w_i = \delta^*(s, x_i)$$
.

By lemma
$$q_i \neq q_i$$
 for all $i \neq j$.

As such,
$$|Q| \ge |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |F|$$
.

Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for **L**.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.

Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

By lemma $q_i \neq q_j$ for all $i \neq j$.

As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |F|$.

Infinite Fooling Sets

Corollary

If **L** has an infinite fooling set **F** then **L** is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

```
Let F_i = \{w_1, \ldots, w_i\}.
```

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Infinite Fooling Sets

Corollary

If **L** has an infinite fooling set **F** then **L** is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in *M* is infinite.

Contradiction: DFA = deterministic **finite** automata. But *M* not finite.

Infinite Fooling Sets

Corollary

If **L** has an infinite fooling set **F** then **L** is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 59

Examples

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^k 1^\ell \mid k \neq \ell\}$

Examples

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^k 1^\ell \mid k \neq \ell\}$

Examples

- $\{0^k 1^k \mid k \ge 0\}$
- {bitstrings with equal number of 0s and 1s}
- $\bullet \ \{0^k 1^\ell \mid k \neq \ell\}$

Harder example: The language of squares is not regular

$$\{0^{k^2}\mid k\geq 0\}$$

Really hard: Primes are not regular

An exercise left for your enjoyment

```
\{0^k \mid k \text{ is a prime number}\}
```

- Probably easier to prove directly on the automata.
- 2 There are infinite number of prime numbers.
- § For every n > 0, observe that $n!, n! + 1, \dots, n! + n$ are all composite there are arbitrarily big gaps between prime numbers.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.3.1

Exponential gap in number of states between DFA and NFA sizes

 $L_4 = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ located 4 positions from the end} \}$

DFA:

Har-Peled (UIUC) CS374 33 Fall 2020 33 / 59

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$

Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- ullet Suppose $a_1a_2\ldots a_k$ and $b_1b_2\ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{ w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_k is accepted by a NFA N with k+1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set F?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k 1^k \mid k \ge 0\}$ do not pick 1 and 10 (say). Why?

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.4

Closure properties: Proving non-regularity

 $H = \{ bitstrings with equal number of 0s and 1s \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H' = H \cap L(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

 $H = \{ bitstrings with equal number of 0s and 1s \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$\mathbf{H'} = \mathbf{H} \cap \mathbf{L}(0^*1^*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

 $H = \{ \text{bitstrings with equal number of 0s and 1s} \}$

$$H' = \{0^k 1^k \mid k \ge 0\}$$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$H' = H \cap L(0*1*)$$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, H' also would be regular. But we know H' is not regular, a contradiction.

General recipe:

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.5 Myhill-Nerode Theorem

One automata to rule them all

"Myhill-Nerode Theorem": A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.5.1

Myhill-Nerode Theorem: Equivalence between strings

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Definition

 $x \equiv_{L} y$ means that $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$. In words: x is equivalent to y under L.

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Definition

 $x \equiv_{L} y$ means that $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$. In words: x is equivalent to y under L.

Har-Peled (UIUC) CS374 45 Fall 2020 45 / 59

Example: Equivalence classes

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- ③ Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- **1** Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- Symmetry: $x \equiv_L y$ then $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^*$: $yw \in L \iff xw \in L \implies y \equiv_L x$.
- ③ Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- ③ Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- ③ Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- **3** Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- 3 Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Claim

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

- Reflexive: $\forall x \in \Sigma^*$: $\forall w \in \Sigma^*$: $xw \in L \iff xw \in L$. $\implies x \equiv_L x$.
- ② Symmetry: $x \equiv_{L} y$ then $\forall w \in \Sigma^{*}$: $xw \in L \iff yw \in L$ $\forall w \in \Sigma^{*}$: $yw \in L \iff xw \in L \implies y \equiv_{L} x$.
- 3 Transitivity: $x \equiv_L y$ and $y \equiv_L z$ $\forall w \in \Sigma^*$: $xw \in L \iff yw \in L$ and $\forall w \in \Sigma^*$: $yw \in L \iff zw \in L$ $\implies \forall w \in \Sigma^*$: $xw \in L \iff zw \in L$ $\implies x \equiv_L z$.

Equivalences over automatas...

Claim (Just proved.)

 $\equiv_{\mathbf{L}}$ is an equivalence relation over Σ^* .

Therefore, \equiv_{L} partitions Σ^* into a collection of equivalence classes.

Definition

L: A language For a string $x \in \Sigma^*$, let

$$[x] = [x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}$$

be the equivalence class of x according to L.

Definition

 $[L] = \{[x]_L \mid x \in \Sigma^*\}$ is the set of equivalence classes of L.

Lemma

Let x, y be two distinct strings.

 $x \equiv_{\mathbf{L}} y \iff x, y \text{ are indistinguishable for } \mathbf{L}.$

Proof.

 $x \equiv_{L} y \implies \forall w \in \Sigma^{*} : xw \in L \iff yw \in L$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^* : xw \in L \text{ and } yw \not\in L$

 \implies x and y are distinguishable for L.

49

Lemma

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Proof.

 $x \equiv_{\mathsf{L}} y \implies \forall w \in \Sigma^* : xw \in \mathsf{L} \iff yw \in \mathsf{L}$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^* : xw \in L \text{ and } yw \not\in L \implies x \text{ and } y \text{ are distinguishable for } L.$

49

Lemma

Let x, y be two distinct strings.

 $x \equiv_{\mathbf{L}} y \iff x, y \text{ are indistinguishable for } \mathbf{L}.$

Proof.

 $x \equiv_{\mathsf{L}} y \implies \forall w \in \Sigma^* : xw \in \mathsf{L} \iff yw \in \mathsf{L}$

x and y are indistinguishable for L.

 $\mathbf{x} \not\equiv_{\mathbf{L}} \mathbf{y} \implies \exists w \in \Sigma^* : \mathbf{x} w \in \mathbf{L} \text{ and } \mathbf{y} w \not\in \mathbf{L}$

 \implies x and y are distinguishable for L.

49

Lemma

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Proof.

 $x \equiv_{L} y \implies \forall w \in \Sigma^{*}: xw \in L \iff yw \in L$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^* : xw \in L \text{ and } yw \not\in L$

 \implies x and y are distinguishable for L.

Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings.

 $x \equiv_{\mathbf{L}} y \iff x, y \text{ are indistinguishable for } \mathbf{L}.$

Proof.

 $x \equiv_{L} y \implies \forall w \in \Sigma^{*} : xw \in L \iff yw \in L$

x and y are indistinguishable for L.

 $x \not\equiv_L y \implies \exists w \in \Sigma^* : xw \in L \text{ and } yw \not\in L$

 \implies x and y are distinguishable for L.

49

All strings arriving at a state are in the same class

Lemma

 $M = (Q, \Sigma, \delta, s, A)$ a DFA for a language L.

For any $oldsymbol{q} \in oldsymbol{A}$, let $oldsymbol{L_q} = \{ w \in \Sigma^* \mid oldsymbol{
abla} w = \delta^*(s,w) = oldsymbol{q} \}.$

Then, there exists a string x, such that $L_q \subseteq [x]_L$.

An inefficient automata

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

6.5.2

Stating and proving the Myhill-Nerode Theorem

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Corollary

If \equiv_{L} is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If \equiv_{L} has infinite number of equivalence classes $\implies \exists$ infinite fooling set for L .

⇒ L is not regular

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Corollary

If \equiv_{L} is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If $\equiv_{\mathbf{L}}$ has infinite number of equivalence classes $\implies \exists$ infinite fooling set for \mathbf{L} .

Har-Peled (UIUC) CS374 54 Fall 2020 54 / 59

Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.

 $x \equiv_{L} y \iff x, y \text{ are indistinguishable for } L.$

Corollary

If \equiv_{L} is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If $\equiv_{\mathbf{L}}$ has infinite number of equivalence classes $\implies \exists$ infinite fooling set for \mathbf{L} .

Har-Peled (UIUC) CS374 54 Fall 2020 54 / 59

Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

```
 [x] = [y] \implies \forall w \in \Sigma^* \colon xw \in L \iff yw \in L 
 \implies \forall w' \in \Sigma^* \colon xaw' \in L \iff yaw' \in L 
 \implies [xa]_L = [ya]_L. 
 // w = aw'
```

Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$[x] = [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L$$

$$\implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L \qquad // w = aw'$$

$$\implies [xa]_L = [ya]_L.$$

Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$[x] = [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L$$

$$\implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L \qquad // w = aw'$$

$$\implies [xa]_L = [ya]_L.$$

Lemma

For all $x, y \in \Sigma^*$, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$[x] = [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L$$

$$\implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L \qquad // w = aw'$$

$$\implies [xa]_L = [ya]_L.$$

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

```
Set of states: Q = [L]

Start state: s = [\varepsilon]_L.

Accept states: A = \{[x]_L \mid x \in L\}.

Transition function: \delta([x]_L, a) = [xa]_L.

M = (Q, \Sigma, \delta, s, A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.
```

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

```
Set of states: Q = [L]

Start state: s = [\varepsilon]_L.

Accept states: A = \{[x]_L \mid x \in L\}.

Transition function: \delta([x]_L, a) = [xa]_L.

M = (Q, \Sigma, \delta, s, A): The resulting DFA.

Clearly, M is a DFA with n states, and it accepts L.
```

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

Proof.

Set of states: Q = [L]

```
Start state: s = [\varepsilon]_L.

Accept states: A = \{[x]_L \mid x \in L\}.

Transition function: \delta([x]_L, a) = [xa]_L.

M = (Q, \Sigma, \delta, s, A): The resulting DFA.
```

Clearly, M is a DFA with n states, and it accepts L.

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

```
Set of states: Q = [L]
```

Start state:
$$s = [\varepsilon]_L$$
.

Accept states:
$$A = \{ [x]_L \mid x \in L \}.$$

Transition function:
$$\delta([x]_L, a) = [xa]_L$$
.

$$M = (Q, \Sigma, \delta, s, A)$$
: The resulting DFA.

Clearly,
$$M$$
 is a DFA with n states, and it accepts L .

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

Proof.

```
Set of states: Q = [L]
```

Start state:
$$s = [\varepsilon]_L$$
.

Accept states:
$$\mathbf{A} = \{ [x]_{\mathbf{L}} \mid x \in \mathbf{L} \}.$$

Transition function:
$$\delta([x]_L, a) = [xa]_L$$
.

$$M = (Q, \Sigma, \delta, s, A)$$
: The resulting DFA.

Clearly,
$$M$$
 is a DFA with n states, and it accepts L .

56 / 59

Lemma

If L has n distinct equivalence classes, then there is a \overline{DFA} that accepts it using n states.

```
Set of states: Q = [L]
```

Start state:
$$s = [\varepsilon]_L$$
.

Accept states:
$$A = \{ [x]_L \mid x \in L \}.$$

Transition function:
$$\delta([x]_L, a) = [xa]_L$$
.

$$M = (Q, \Sigma, \delta, s, A)$$
: The resulting DFA.

Clearly,
$$M$$
 is a DFA with n states, and it accepts L .

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular $\iff \equiv_{\mathbf{L}}$ has a finite number of equivalence classes.

If \equiv_L is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.

What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Exercise

- Given two DFAs M_1 , M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.
- ② Given DFA M, and two states q, q' of M, show an efficient algorithm to decide if q and q' are distinguishable. (Hint: Use the first part.)
- \odot Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.