Algorithms & Models of Computation
CS/ECE 374, Fall 2020

Non-deterministic Finite Automata
(NFAs)

Lecture 4
Thursday, September 3, 2020

ATEXed: September 1, 2020 21:19

Fall 2020 1/52

Har-Peled (UIUC)



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.1
NFA Introduction
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Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.
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Non-deterministic Finite State Automata by example |l

..but only if it is made out of silver.
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Non-deterministic Finite State Automata by example |l

..but only if it is made out of silver.

More efficient
NFA:
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Non-deterministic Finite State Automata by example |l

..but only if it is made out of silver.

More efficient
NFA:

Not the point...
...because DFA

can still do it ef-
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Non-deterministic Finite State Automata (NFAs)
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Non-deterministic Finite State Automata (NFAs)

Differences from DFA
@ From state g on same letter a € L multiple possible states
@ No transitions from g on some letters

@ e-transitions!
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Non-deterministic Finite State Automata (NFAs)

Differences from DFA
@ From state g on same letter a € L multiple possible states
@ No transitions from g on some letters
@ e-transitions!
Questions:
@ Is this a “real” machine?
@ What does it do?

Har-Peled (UIUC) CS374 5 Fall 2020 5/52



NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
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NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
@ From g-. on 1
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NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
@ From g-. on 1
@ From g. on 0
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NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
@ From g-. on 1
From g. on 0

o
@ From gg on €
o
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NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
@ From g-. on 1
@ From g. on 0
@ From gg on €
@ From g. on 01
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NFA behavior

Machine on input string w from state g can lead to set of states (could be empty)
@ From g-. on 1
@ From g. on 0
@ From gg on €
@ From g. on 01

@ From gqo on 00
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NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w.
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NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.
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NFA acceptance: example

@ Is 01 accepted?
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NFA acceptance: example

@ Is 01 accepted?
@ Is 001 accepted?
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NFA acceptance: example

@ Is 01 accepted?
@ Is 001 accepted?
@ Is 100 accepted?
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NFA acceptance: example

@ Is 01 accepted?

@ Is 001 accepted?

@ Is 100 accepted?

@ Are all strings in 1*01 accepted?
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NFA acceptance: example

@ Is 01 accepted?

@ Is 001 accepted?

@ Is 100 accepted?

@ Are all strings in 1*01 accepted?

@ What is the language accepted by N7

Har-Peled (UIUC) CS374 8 Fall 2020 8/52



NFA acceptance: example

@ Is 01 accepted?

@ Is 001 accepted?

@ Is 100 accepted?

@ Are all strings in 1*01 accepted?

@ What is the language accepted by N7
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NFA acceptance: example

@ Is 01 accepted?

@ Is 001 accepted?

@ Is 100 accepted?

@ Are all strings in 1*01 accepted?

@ What is the language accepted by N7

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than
to show that a string is not accepted.
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Simulating NFA

Example the first

Run it on input
ababa.
Idea: Keep track of the states where the NFA might be at any given time.
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Simulating NFA
Example the first

avb a,b

t=0:
A a;®b‘@a‘D b

Remaining input: ababa.
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Simulating NFA
Example the first

a,b a,b

t=0: .
e Cam OO0

a,b

Remaining input: ababa.

a,b
tl:@
a (m) b /) 2 b
V=m0

Remaining input: baba.
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Simulating NFA
Example the first

avb a,b

t=1: .

a

A >

&)
©
©

Remaining input: baba.
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Simulating NFA
Example the first

a,b a,b

t=1: .
@0

a,b

Remaining input: baba.

a,b
t2:8
a /MmNy b () 2 b
e O O €

Remaining input: aba.
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Simulating NFA

Example the first

Remaining input: aba.
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Simulating NFA
Example the first

a,b a,b

t=2: .
D@0

a,b

Remaining input: aba.

a,b
t3:8
a ()b ) a b
3 O O C

Remaining input: ba.
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Simulating NFA

Example the first

Remaining input: ba.
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Simulating NFA
Example the first

avb a,b

t = 3:8 .
a (m) b /0 a b

A=)~ 0—E

a,b

Remaining input: ba.

a,b
t4:8
a (b ()2 b
3 RO €

Remaining input: a.
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Simulating NFA

Example the first

Remaining input: a.

Har-Peled (UIUC) Fall 2020 9/52



Simulating NFA
Example the first

a,b a,b
t =4
g aNCSNCSNORs®
a,b
(
®

Remaining input: a.

a,b
t5:8
a () b /0 a b
D@0

Remaining input: .
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Simulating NFA

Example the first

Remaining input: €.

Accepts: ababa.
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An exercise

For you to think about...

A. What is the language that the following NFA accepts?
0

B. What is the minimal number of states in a DFA that recognizes the same language?
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THE END

(for now)




Algorithms & Models of Computation
CS/ECE 374, Fall 2020

4.1.1
Formal definition of NFA
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Reminder: Power set

Q: a set. Power set of Q is: P(Q) =29 = {X | X C Q} is set of all subsets of Q.

Q=1{1,2,3,4}

{17 27 37 4} 9
{2a 374} ) {1a 3a4} s {19 294} ’ {17 2, 3} s
P(Q) = {1a2}a{193}9{1a4}a{293}9{2a4}a{394}9
{1},{2}@{3},{4},
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Formal Tuple Notation

A non-deterministic finite automata (NFA) N = (Q, %, d, s, A) is a five tuple where
@ @ is a finite set whose elements are called states,

@ X is a finite set called the input alphabet,

0 6:Q xXLU{e} = P(Q) is the transition function (here P(Q) is the power set
of Q),

@ s € Q is the start state,

@ A C @ is the set of accepting/final states.

d(qg,a) for a € X U {e} is a subset of @ — a set of states.
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o Q= {q., 90, qoos Gp}
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o Q= {q., 90, qoos Gp}
o) =
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o Q= {q., 90, qoos Gp}
o ¥ ={0,1}
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o Q= {q., 90, qoos Gp}
o ¥ ={0,1}
)
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o Q= {q., 90, qoos Gp}
o ¥ ={0,1}
)

@ S =
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o Q= {q., 90, qoos Gp}

o ¥ ={0,1}
)
°s=gq.
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o Q= {q., 90, qoos Gp}

o ¥ ={0,1}
)
°s=gq.

e A=
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o Q= {q., 90, qoos Gp}

o ¥ ={0,1}
)
°s=gq.

o A={qp}
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Example
Transition function in detail...

0(qe,€) = {q:} 9(qo,€) = {qo, qoo}
6(qe, 0) = {qe’ QO} 6(q070) = {qOO}
6(qe,1) = {q:} 6(qo,1) = {}
6(qoo, €) = {qoo} 0(gp,€) = {ap}
6(qoo; 0) = {} 6(qp,0) = {ap}
(9oo, 1) : I




THE END

(for now)
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4.1.2

Extending the transition function to strings
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Extending the transition function to strings

@ NFA N = (Q, %, 4,s, A)
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Extending the transition function to strings

O NFA N = (Q, %, 3,5, A)
@ 4(q, a): set of states that N can go to from g on reading a € ¥ U {e}.
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Extending the transition function to strings

O NFA N = (Q, T, 3, s, A)
@ 4(q, a): set of states that N can go to from g on reading a € ¥ U {e}.
© Want transition function 6* : Q@ X ¥* — P(Q)
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Extending the transition function to strings

O NFA N = (Q, %, 3,5, A)

@ 4(q, a): set of states that N can go to from g on reading a € ¥ U {e}.
© Want transition function 6* : Q@ X ¥* — P(Q)

Q@ 6*(g, w): set of states reachable on input w starting in state q.
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Extending the transition function to strings

Definition
For NFA N = (Q, %, d,s,A) and g € Q the ereach(q) is the set of all states that g
can reach using only e-transitions.
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Extending the transition function to strings

Definition
For NFA N = (Q, %, d,s,A) and g € Q the ereach(q) is the set of all states that g
can reach using only e-transitions.

Definition

For X C Q: ereach(X) = [J,cx €reach(x).
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of 6* : Q X ¥* — P(Q):
o if w =c¢, 6*(q, w) = ereach(q)
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of 6* : Q X ¥* — P(Q):
o if w =c¢, 6*(q, w) = ereach(q)

o ifw=awherea€X: 6%(qg,a)= ereach U o(p, a)

pEereach(q)
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Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of 6* : Q X ¥* — P(Q):
o if w =c¢, 6*(q, w) = ereach(q)

o ifw=awherea€X: 6%(qg,a)= ereach U o(p, a)

pEereach(q)

e if w = ax: 0*(q, w) = ereach U U 0" (r, x)

pEereach(q) \ redé*(p,a)
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Transition for strings: w = ax

Translation...

6*(q, w) = ereach U U 0*(r, x)

pEereach(q) \ red*(p,a)
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Transition for strings: w = ax

Translation...

6*(q, w) = ereach U U 0*(r, x)

pEereach(q) \ red*(p,a)

© R = ereach(q) = 9"(q, w) = ereach U U d*(r, x)

PER reé*(p,a)
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Transition for strings: w = ax

Translation...

6*(q, w) = ereach U U 0*(r, x)

pEereach(q) \ red*(p,a)

© R = ereach(q) = 9"(q, w) = ereach U U d*(r, x)

PER reé*(p,a)

QO N= U 0*(p, a): All the states reachable from g with the letter a.
pER
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Transition for strings: w = ax

Translation...

6*(q, w) = ereach U U 0*(r, x)

pEereach(q) \ red*(p,a)

© R = ereach(q) = 9"(q, w) = ereach U U d*(r, x)

PER reé*(p,a)

QO N= U 0*(p, a): All the states reachable from g with the letter a.
pER

Q §(q,w) = ereach(U o*(r, x))

renN
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Formal definition of language accepted by N

A string w is accepted by NFA N if §5(s, w) N A # 0.

v

Definition
The language L(N) accepted by a NFA N = (Q, %, d,s,A) is

{w € * | §*(s, w) N A £ 0}.
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Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if §5(s, w) N A # 0.

Definition
The language L(N) accepted by a NFA N = (Q, %, d,s,A) is

{w € * | §*(s, w) N A £ 0}.

Important: Formal definition of the language of NFA above uses 6* and not §. As
such, one does not need to include e-transitions closure when specifying d, since 6*
takes care of that.
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What is:
@ 6*(s,€)
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What is:
@ 6*(s,€)
@ 6*(s,0)
°
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What is:
@ 6*(s,€)
@ 6*(s,0)
e 0*(c,0)
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What is:
@ 6*(s,€)
@ 6*(s,0)
e 0*(c,0)
e 6*(b,00)
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Another definition of computation

q —p p: State p of NFA N is reachable from g on w <> there exists a
sequence of states ro, ry, ..., rx and a sequence Xi, Xp, .. . , Xx Where x; € X U {e},

for each i, such that:
°rn=aq,
e foreach i, riy1 € 6*(riy Xit1),

@ ry = p, and

Q@ W = X1XpX3 - Xg.

Definition

on(q,w) = {pe Q ‘ q —rn P}-

4
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Why non-determinism?

@ Non-determinism adds power to the model; richer programming language and
hence (much) easier to “design” programs

e Fundamental in theory to prove many theorems
@ Very important in practice directly and indirectly
@ Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used
to it and then you will appreciate it slowly.

Har-Peled (UIUC) CS374 26 Fall 2020 26 /52



THE END

(for now)
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4.2
Constructing NFAs
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DFAs and NFAs

@ Every DFA is a NFA so NFAs are at least as powerful as DFAs.

@ NFAs prove ability to “guess and verify” which simplifies design and reduces
number of states

@ Easy proofs of some closure properties
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Strings that represent decimal numbers.

o

Har-Peled (UIUC) CS374 30 Fall 2020 30/52



Strings that represent decimal numbers.

o
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@ {strings that contain CS374 as a substring}
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@ {strings that contain CS374 as a substring}
@ {strings that contain CS374 or CS473 as a substring}
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@ {strings that contain CS374 as a substring}
@ {strings that contain CS374 or CS473 as a substring}
o {strings that contain CS374 and CS473 as substrings}
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L, = {bitstrings that have a 1 k positions from the end}
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DFA for same task is much bigger...

L, = {bitstrings that have a 1 in fourth position from the end}
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A simple transformation

For every NFA N there is another NFA N’ such that L(N) = L(N’) and such that
N’ has the following two properties:

@ N’ has single final state f that has no outgoing transitions
@ The start state s of N is different from f
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THE END

(for now)
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4.3
Closure Properties of NFAs
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Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?
@ union

intersection

°
@ concatenation
o Kleene star

°

complement
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Closure under union

For any two NFAs N; and N, there is a NFA N such that L(N) = L(N;) U L(N,).

® w» @

© % ®
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Closure under union

For any two NFAs N; and N, there is a NFA N such that L(N) = L(N;) U L(N,).

® w» @

© % ®
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Closure under concatenation

For any two NFAs N; and N, there is a NFA N such that L(N) = L(N;y)eL(N,).

©® ~ 0] @ ~ O
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Closure under concatenation

For any two NFAs N; and N, there is a NFA N such that L(N) = L(N;y)eL(N,).

©® ~ 0] @ ~ O
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Closure under Kleene star

For any NFA N there is a NFA N such that L(N) = (L(Ny))*.

® » @
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Closure under Kleene star

For any NFA N there is a NFA N such that L(N) = (L(Ny))*.
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Closure under Kleene star

For any NFA N there is a NFA N such that L(N) = (L(Ny))*.

Does not work! Why?
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Closure under Kleene star

For any NFA N there is a NFA N such that L(N) = (L(Ny))*.
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THE END

(for now)
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4.4
NFAs capture Regular Languages
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Regular Languages Recap

Regular Languages Regular Expressions
O regular @ denotes )

{€e} regular € denotes {€}

{a} regular for a € ¥ a denote {a}

R; U R; regular if both are ri + ro, denotes R; U Ry
R; R, regular if both are riro denotes Ry Ry

R* is regular if R is r* denote R*

Regular expressions denote regular languages — they explicitly show the operations that
were used to form the language
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NFAs and Regular Language

For every regular language L there is an NFA N such that L = L(N).

Proof strategy:
@ For every regular expression r show that there is a NFA N such that L(r) = L(N)

@ Induction on length of r
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Base cases: 0, {¢}, {a} fora € L.
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ ri, , regular expressions and r = r;, + r».
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ nry, r; regular expressions and r = r; + r».
By induction there are NFAs Ny, N, s.t
L(Nl) = L(rl) and L(Ng) = L(rg).
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ ri, , regular expressions and r = r;, + r».
By induction there are NFAs Ny, N, s.t
L(N;) = L(r) and L(N,) = L(r,). We have already seen that there is NFA N
s.t L(N) = L(N;) U L(N,), hence L(N) = L(r)
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ ri, , regular expressions and r = r;, + r».
By induction there are NFAs Ny, N, s.t
L(N;) = L(r) and L(N,) = L(r,). We have already seen that there is NFA N
s.t L(N) = L(N;) U L(N,), hence L(N) = L(r)

@r=mrenr.

Har-Peled (UIUC) CS374 48 Fall 2020 48 /52



NFAs and Regular Language

For every regular expression r show that there is a NFA N such that L(r) = L(N)

Induction on length of r

Inductive cases:

ry, r, regular expressions and r = r; + r».

By induction there are NFAs Ny, N, s.t

L(N;) = L(r) and L(N,) = L(r,). We have already seen that there is NFA N
s.t L(N) = L(N;) U L(N,), hence L(N) = L(r)

r = rper,. Use closure of NFA languages under concatenation
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ nry, r; regular expressions and r = r; + r».
By induction there are NFAs Ny, N, s.t
L(N;) = L(r) and L(N,) = L(r,). We have already seen that there is NFA N
s.t L(N) = L(N;) U L(N,), hence L(N) = L(r)

@ r = rper. Use closure of NFA languages under concatenation

o r=(n)~
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NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ nry, r; regular expressions and r = r; + r».
By induction there are NFAs Ny, N, s.t
L(N;) = L(r) and L(N,) = L(r,). We have already seen that there is NFA N
s.t L(N) = L(N;) U L(N,), hence L(N) = L(r)

@ r = rper. Use closure of NFA languages under concatenation

e r = (n)*. Use closure of NFA languages under Kleene star
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(e+0)(1+10)"

— (8+0) ‘,(1+10)*

<

—> —i L(1+10) !
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—» — |:(1+10) .
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Example

Final simplified slightly to reduce states
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THE END

(for now)
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