Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Non-deterministic Finite Automata (NFAs)

Lecture 4

Thursday, September 3, 2020

LATEXed: September 1, 2020 21:19

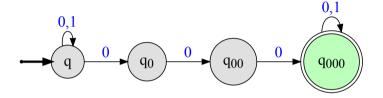
Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.1

NFA Introduction

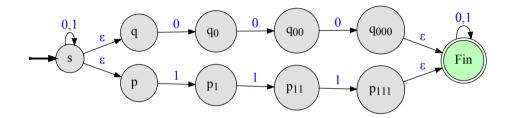
Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.



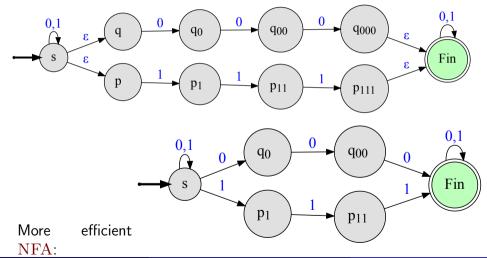
Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.



Non-deterministic Finite State Automata by example II

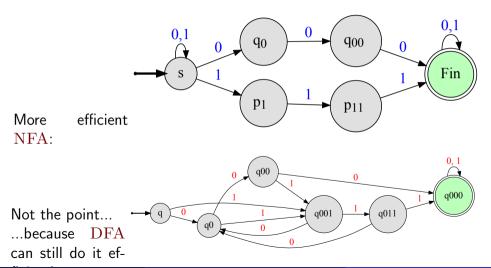
..but only if it is made out of silver.



Har-Peled (UIUC)

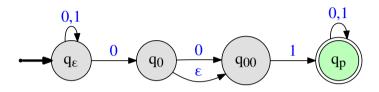
Non-deterministic Finite State Automata by example II

..but only if it is made out of silver.



Har-Peled (UIUC) CS374 4 Fall 2020 4/52

Non-deterministic Finite State Automata (NFAs)



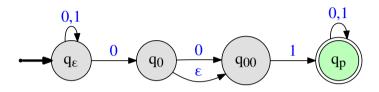
Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε -transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)



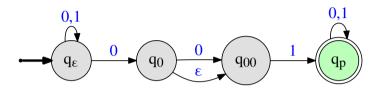
Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

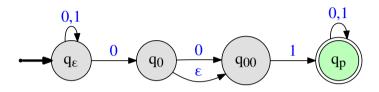


Differences from DFA

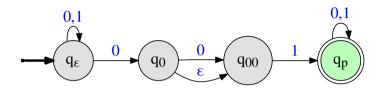
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:

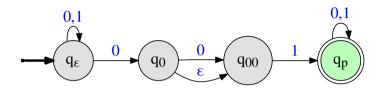
- Is this a "real" machine?
- What does it do?



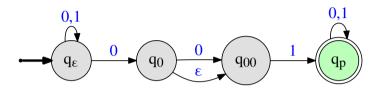
- From q_{ε} on 1
- From q_{ε} on 0
- ullet From $oldsymbol{q}_0$ on $oldsymbol{arepsilon}$
- From q_{ε} on 01
- From **q**₀₀ on 00



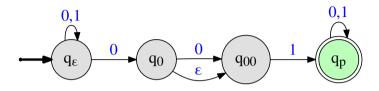
- From q_{ε} on 1
- From q_{ε} on 0
- ullet From $oldsymbol{q}_0$ on $oldsymbol{arepsilon}$
- From q_{ε} on 01
- From **q**₀₀ on 00



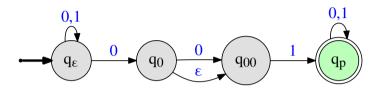
- From q_{ε} on 1
- From q_{ε} on 0
- ullet From $oldsymbol{q}_0$ on $oldsymbol{arepsilon}$
- ullet From $oldsymbol{q}_arepsilon$ on 01
- From **q**₀₀ on 00



- From q_{ε} on 1
- From q_{ε} on 0
- From q_0 on ε
- \bullet From q_{ε} on 01
- From **q**₀₀ on 00

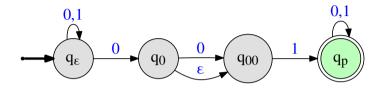


- From q_{ε} on 1
- From q_{ε} on 0
- From q_0 on ε
- From q_{ε} on 01
- From **q**₀₀ on 00



- From q_{ε} on 1
- From q_{ε} on 0
- From q_0 on ε
- From q_{ε} on 01
- From **q**₀₀ on 00

NFA acceptance: informal

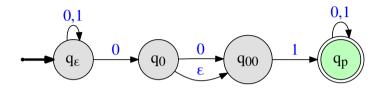


Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

Har-Peled (UIUC) CS374 7 Fall 2020 7/52

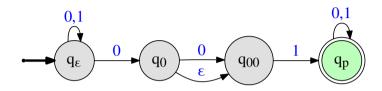
NFA acceptance: informal



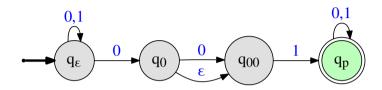
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

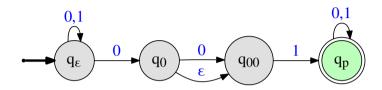
Har-Peled (UIUC) CS374 7 Fall 2020 7/52



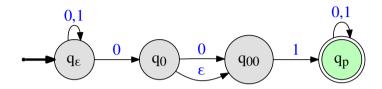
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



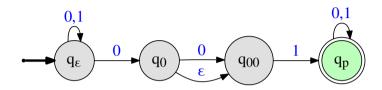
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



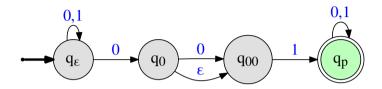
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



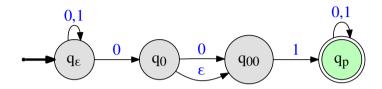
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

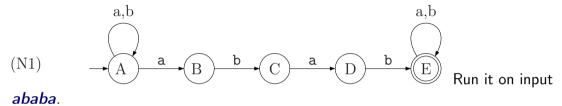


- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?



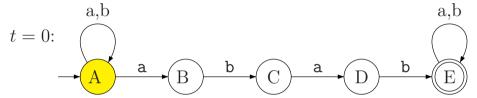
- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Example the first



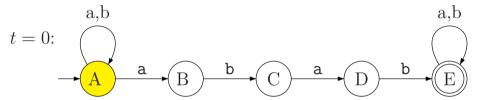
Idea: Keep track of the states where the NFA might be at any given time.

Example the first

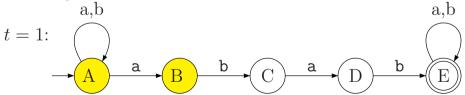


Remaining input: ababa.

Example the first

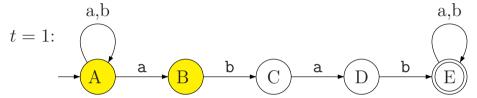


Remaining input: ababa.



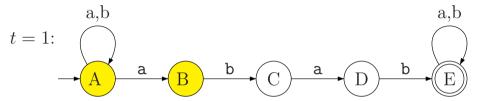
Remaining input: baba.

Example the first

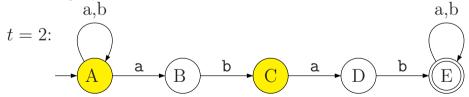


Remaining input: baba.

Example the first

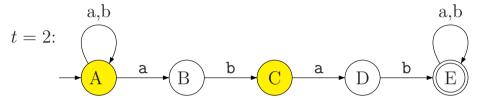


Remaining input: baba.



Remaining input: aba.

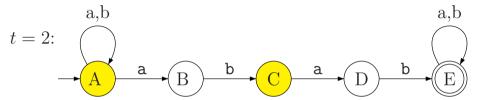
Example the first



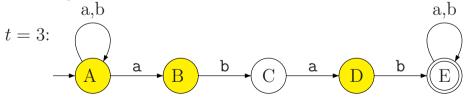
Remaining input: aba.

Har-Peled (UIUC)

Example the first

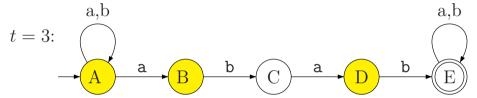


Remaining input: aba.



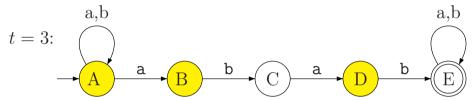
Remaining input: ba.

Example the first

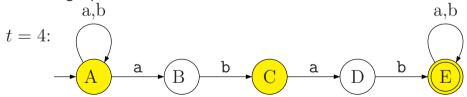


Remaining input: ba.

Example the first

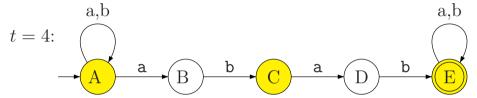


Remaining input: ba.



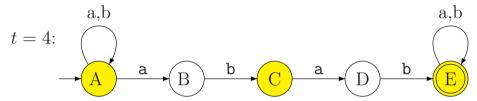
Remaining input: a.

Example the first

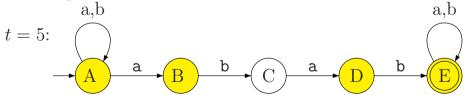


Remaining input: a.

Example the first

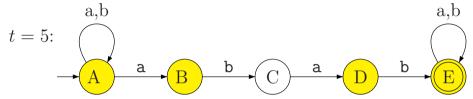


Remaining input: a.



Remaining input: €.

Example the first



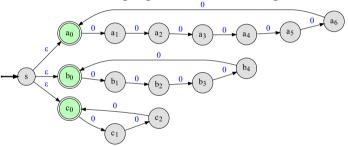
Remaining input: ε .

Accepts: ababa.

An exercise

For you to think about...

A. What is the language that the following NFA accepts?



B. What is the minimal number of states in a DFA that recognizes the same language?

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.1.1

Formal definition of NFA

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

$$Q = \{1, 2, 3, 4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$$

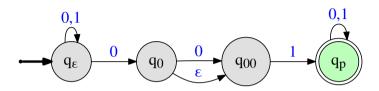
Formal Tuple Notation

Definition

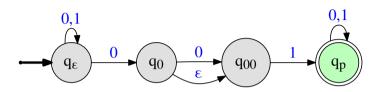
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

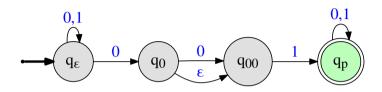
 $\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.



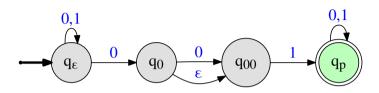
- $Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- 8
- ullet $s=q_{arepsilon}$
- $\bullet \ A = \{q_p\}$



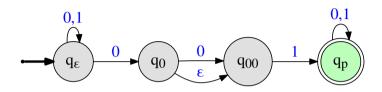
- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- 8
- ullet $s=q_{arepsilon}$
- $\bullet \ A = \{q_p\}$



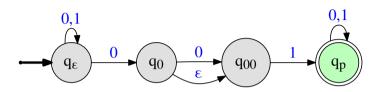
- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- 8
- ullet $s=q_{arepsilon}$
- $\bullet \ A = \{q_p\}$



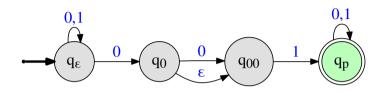
- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- 8
- ullet $s=q_{arepsilon}$
- $\bullet \ A = \{q_p\}$



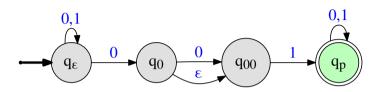
- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- ullet $s=q_{arepsilon}$
- $\bullet \ A = \{q_p\}$



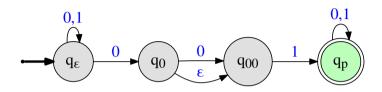
- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_{\varepsilon}$
- $\bullet \ A = \{q_p\}$



- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_{\varepsilon}$
- $\bullet \ A = \{q_p\}$

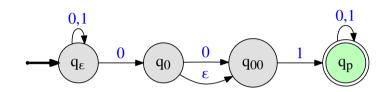


- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- $s = q_{\varepsilon}$
- $A = \{q_p\}$



- $\bullet \ \ Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- \bullet δ
- ullet $s=oldsymbol{q}_arepsilon$
- $\bullet \ A = \{q_p\}$

Transition function in detail...



$$egin{aligned} \delta(m{q}_{arepsilon}, m{arepsilon}) &= \{m{q}_{arepsilon}\} \ \delta(m{q}_{0}, m{arepsilon}) &= \{m{q}_{0}, m{q}_{00}\} \ \delta(m{q}_{0}, 0) &= \{m{q}_{00}\} \ \delta(m{q}_{0}, 1) &= \{m{q}_{00}\} \ \delta(m{q}_{00}, m{arepsilon}) &= \{m{q}_{00}\} \ \delta(m{q}_{00}, m{arepsilon}) &= \{m{q}_{00}\} \ \delta(m{q}_{00}, 0) &= \{m{q}_{p}\} \ \delta(m{q}_{00}, 0) &= \{m{q}_{p}\} \ \delta(m{q}_{00}, 1) &= \{m{q}_{p}\} \ \delta(m{q}_{00}, 1) &= \{m{q}_{p}\} \ \delta(m{q}_{p}, 1) &= \{m{q}_{p}\} \end{aligned}$$

Har-Peled (UIUC)

THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

4.1.2

- ② $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- $ext{ } ext{ } ext$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

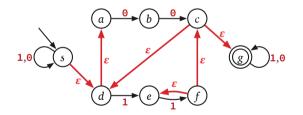
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- ullet Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- **③** Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- ① $\delta^*(q, w)$: set of states reachable on input w starting in state q.

- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- lacksquare Want transition function $\delta^*: Q imes \Sigma^* o \mathcal{P}(Q)$
- \bullet $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

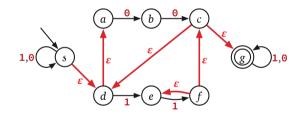


Definition

For $X \subseteq Q$: $\epsilon \operatorname{reach}(X) = \bigcup_{x \in X} \epsilon \operatorname{reach}(x)$.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.



Definition

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: \mathbf{Q} \times \Sigma^* \to \mathcal{P}(\mathbf{Q})$:

- ullet if $oldsymbol{w}=arepsilon$, $oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{oldsymbol{p}\in\epsilon$ reach $(q)}\delta(oldsymbol{p},a)
 ight)$
- if w = ax: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- ullet if $oldsymbol{w}=oldsymbol{arepsilon},\, oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{m{p}\in\epsilon ext{reach}(m{q})}\delta(m{p},a)
 ight)$

• if
$$w = ax$$
: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: \mathbf{Q} \times \Sigma^* \to \mathcal{P}(\mathbf{Q})$:

- ullet if $oldsymbol{w}=oldsymbol{arepsilon},\, oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{w})=\epsilon$ reach $(oldsymbol{q})$
- ullet if w=a where $a\in \Sigma$: $\delta^*(q,a)=\epsilon$ reach $\left(igcup_{m{p}\in\epsilon ext{reach}(m{q})}\delta(m{p},a)
 ight)$
- ullet if w=ax: $\delta^*(q,w)=\epsilon \operatorname{reach}\left(igcup_{p\in\epsilon\operatorname{reach}(q)}\left(igcup_{r\in\delta^*(p,a)}\delta^*(r,x)
 ight)
 ight)$

$$\delta^*(q,w) = \epsilon$$
reach $\left(igcup_{p \in \epsilon ext{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$

- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(oldsymbol{q},w)=\epsilon$ reach $\left(igcup_{r\in N}\delta^*(r,x)
 ight)$

$$\delta^*(q,w) = \epsilon \mathsf{reach}\left(igcup_{p \in \epsilon \mathsf{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$$

- $\bullet \ \ R = \epsilon \mathrm{reach}(q) \implies \delta^*(q,w) = \epsilon \mathrm{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)$
- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(oldsymbol{q},w)=\epsilon ext{reach}igg(igcup_{r\in oldsymbol{N}}\delta^*(r,x)igg)$

$$\delta^*(q,w) = \epsilon$$
reach $\left(igcup_{p \in \epsilon ext{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$

- ② $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(q,w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r,x)\right)$

$$\delta^*(q,w) = \epsilon \mathsf{reach}\left(igcup_{p \in \epsilon \mathsf{reach}(q)} \left(igcup_{r \in \delta^*(p,a)} \delta^*(r,x)
ight)
ight)$$

- $\bullet \ R = \epsilon \mathrm{reach}(q) \implies \delta^*(q,w) = \epsilon \mathrm{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)$
- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.
- $\delta^*(oldsymbol{q},oldsymbol{w}) = \epsilon {\sf reach}\Biggl(igcup_{oldsymbol{r}\inoldsymbol{N}} \delta^*(oldsymbol{r},x)\Biggr)$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

Formal definition of language accepted by N

Definition

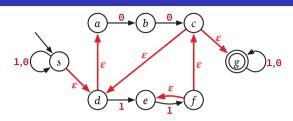
A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

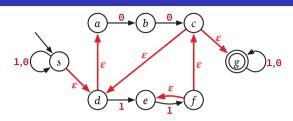
The language L(N) accepted by a NFA $N=(Q,\Sigma,\delta,s,A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

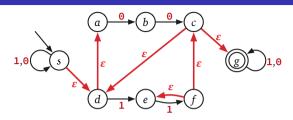
Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.



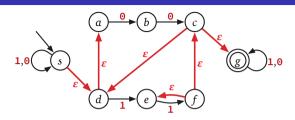
- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b, 00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b, 00)$



- ullet $\delta^*(s,\epsilon)$
- \bullet $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b,00)$

Another definition of computation

Definition

 $q \xrightarrow{w}_{N} p$: State p of NFA N is <u>reachable</u> from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $r_0 = q$,
- for each i, $r_{i+1} \in \delta^*(r_i, x_{i+1})$,
- \bullet $r_k = p$, and
- $\bullet \ \mathbf{w} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \mathbf{x}_k.$

Definition

$$\delta_{N}^{*}(q, w) = \left\{ p \in Q \mid q \xrightarrow{w}_{N} p \right\}.$$

25

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

THE END

...

(for now)

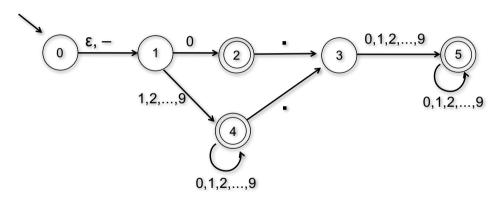
Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.2 Constructing NFAs

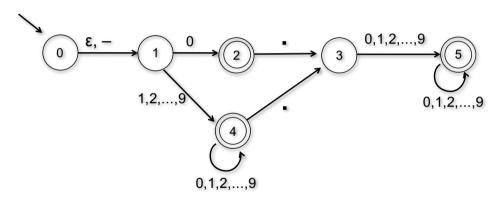
DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Strings that represent decimal numbers.



Strings that represent decimal numbers.



- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

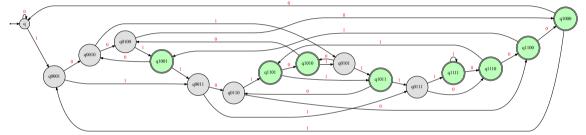
- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

 $L_k = \{ \text{bitstrings that have a 1 } k \text{ positions from the end} \}$

DFA for same task is much bigger...

 $L_4 = \{$ bitstrings that have a 1 in fourth position from the end $\}$



A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- ullet N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

THE END

...

(for now)

Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.3 Closure Properties of NFAs

Closure properties of NFAs

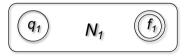
Are the class of languages accepted by NFAs closed under the following operations?

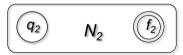
- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

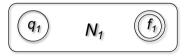


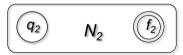


Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

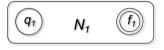


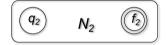


Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

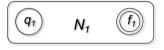


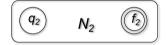


Closure under concatenation

Theorem

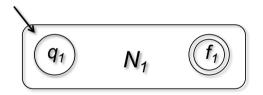
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.





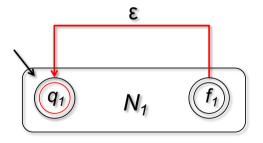
Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Theorem

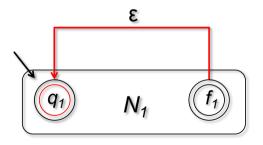
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Does not work! Why?

Theorem

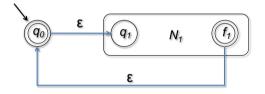
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Does not work! Why?

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



THE END

...

(for now)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

4.4

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

Regular Expressions

```
\emptyset denotes \emptyset

\epsilon denotes \{\epsilon\}

a denote \{a\}

\mathsf{r}_1 + \mathsf{r}_2 denotes R_1 \cup R_2

\mathsf{r}_1\mathsf{r}_2 denotes R_1R_2

\mathsf{r}^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Theorem

For every regular language **L** there is an NFA **N** such that $\mathbf{L} = \mathbf{L}(\mathbf{N})$.

Proof strategy:

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

Base cases: \emptyset , $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- r_1 , r_2 regular expressions and $r = r_1 + r_2$.
 - By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA Λ s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

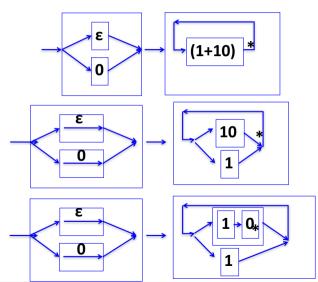
- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- \bullet $r=(r_1)^*$. Use closure of NFA languages under Kleene star

- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

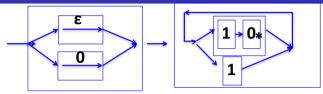
- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- \bullet $r=(r_1)^*$. Use closure of NFA languages under Kleene star

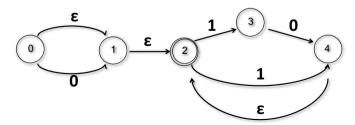
- ullet For every regular expression r show that there is a NFA N such that L(r)=L(N)
- Induction on length of r

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star



Final NFA simplified slightly to reduce states





THE END

...

(for now)