# Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# Deterministic Finite Automata (DFAs)

Lecture 3 Tuesday, September 1, 2020

LATEXed: September 1, 2020 21:19

# Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# **3.1** DFA Introduction

### DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
  - Vending machines
  - Elevators
  - Digital watches
  - Simple network protocols
- Programs with fixed memory

### A simple program

Program to check if a given input string w has odd length

```
int \mathbf{n} = 0
While input is not finished read next character \mathbf{c}
\mathbf{n} \leftarrow \mathbf{n} + 1
endWhile
If (\mathbf{n} \text{ is odd}) output YES
Else output NO
```

```
bit x = 0
While input is not finished read next character c
x \leftarrow \text{flip}(x)
endWhile
If (x = 1) output YES
Else output NO
```

### A simple program

Program to check if a given input string w has odd length

```
int n = 0
While input is not finished read next character c
n \leftarrow n + 1
endWhile
If (n \text{ is odd}) output YES
Else output NO
```

```
bit \mathbf{x} = 0
While input is not finished read next character \mathbf{c}
\mathbf{x} \leftarrow \text{flip}(\mathbf{x})
endWhile
If (\mathbf{x} = 1) output YES
Else output NO
```

### Another view



- Machine has input written on a <u>read-only</u> tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine <u>accepts</u> input string if it is in an accepting state after scanning the last symbol.

Har-Peled (UIUC) CS374 5 Fall 2020 5/58

# Draw me a sheep DFA

DFA to check if a given input string has odd length

# THE END

...

(for now)

# Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 3.1.1

Graphical representation of DFA

### Graphical Representation/State Machine



- ullet Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in  $\Sigma$
- For each state (vertex) q and symbol  $a \in \Sigma$  there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as s,  $q_0$  or "start")
- Some states with double circles labeled as accepting/final states

Har-Peled (UIUC) CS374 9 Fall 2020

9 / 58



- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.



- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

Har-Peled (UIUC) CS374 10 Fall 2020 10 / 58



- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.



- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.



- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

10 / 58



### Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

### Definition



### Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

### Definition

Har-Peled (UIUC) CS374 11 Fall 2020 11/58

### Warning

"M accepts language L" does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in  $\Sigma^* \setminus L$ .

**M** "recognizes" **L** is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

### Warning

"M accepts language L" does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in  $\Sigma^* \setminus L$ .

**M** "recognizes" **L** is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

# THE END

...

(for now)

# Algorithms & Models of Computation CS/ECE 374, Fall 2020

3.1.2

Formal definition of DFA

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

ullet is a finite set called the input alphabet,

ullet  $\delta: Q imes \Sigma o Q$  is the transition function

•  $s \in Q$  is the start state,

A ⊆ Q is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### **Definition**

A deterministic finite automata (DFA)  $M = (Q, \Sigma, \delta, s, A)$  is a five tuple where

- Q is a finite set whose elements are called states,
- $\bullet$   $\Sigma$  is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $s \in Q$  is the start state,
- $A \subseteq Q$  is the set of accepting/final states.

### DFA Notation

$$M = \left(egin{array}{cccc} oldsymbol{Q} & oldsymbol{,} oldsymbol{\Sigma} & oldsymbol{\delta} & oldsymbol{,} oldsymbol{S} & oldsymbol{\delta} & oldsymbol{,} oldsymbol{S} & oldsymbol{A} & oldsymbo$$



- $Q = \{q_0, q_1, q_1, q_3\}$
- $\bullet \ \Sigma = \{0,1\}$
- 8
- $s = q_0$
- $A = \{q_0\}$



- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\bullet \ \Sigma = \{0,1\}$
- 8
- $s = q_0$
- $A = \{q_0\}$



- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- •
- $s = q_0$
- $A = \{q_0\}$



- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_0$
- $A = \{q_0\}$



- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_0$
- $A = \{q_0\}$



- $ullet Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_0$
- $A = \{q_0\}$



- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_0$
- $A = \{q_0\}$



- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_0$
- $A = \{q_0\}$



- $extbf{Q} = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- $\bullet$   $\delta$
- $s = q_0$
- $A = \{q_0\}$

# Example: The transition function





| state                                                        | input | result                                                       |
|--------------------------------------------------------------|-------|--------------------------------------------------------------|
| q                                                            | C     | $\delta(q,c)$                                                |
| $\overline{Q}$                                               | Σ     | Σ                                                            |
| $=$ $q_0$                                                    | 0     | $q_3$                                                        |
| $oldsymbol{q}_0 \ oldsymbol{q}_0$                            | 1     | $oldsymbol{q}_1$                                             |
| $oldsymbol{q}_1$                                             | 0     | $\boldsymbol{q}_0$                                           |
| $oldsymbol{q}_1$                                             | 1     | $egin{array}{c} oldsymbol{q}_0 \ oldsymbol{q}_2 \end{array}$ |
|                                                              | 0     |                                                              |
| $egin{array}{c} oldsymbol{q}_2 \ oldsymbol{q}_2 \end{array}$ | 1     | $egin{array}{c} oldsymbol{q}_2 \ oldsymbol{q}_2 \end{array}$ |
| $q_3$ $q_3$                                                  | 0     | $egin{array}{c} oldsymbol{q}_2 \ oldsymbol{q}_0 \end{array}$ |
| $\boldsymbol{q}_3$                                           | 1     | $  q_0  $                                                    |

# THE END

...

(for now)

# Algorithms & Models of Computation

CS/ECE 374, Fall 2020

# 3.1.3

Extending the transition function to strings

# Extending the transition function to strings

Given DFA  $M=(Q,\Sigma,\delta,s,A)$ ,  $\delta(q,a)$  is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that M will reach from q on reading string w

Transition function  $\delta^*: Q \times \Sigma^* \to Q$  defined inductively as follows:

- $\delta^*(q, w) = q$  if  $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$  if w = ax.

# Extending the transition function to strings

Given DFA  $M=(Q,\Sigma,\delta,s,A)$ ,  $\delta(q,a)$  is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that  ${\it M}$  will reach from  ${\it q}$  on reading string  ${\it w}$ 

Transition function  $\delta^*: Q \times \Sigma^* \to Q$  defined inductively as follows:

- $\bullet$   $\delta^*(q, w) = q$  if  $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$  if w = ax.

# Formal definition of language accepted by M

### Definition

The language L(M) accepted by a DFA  $M=(Q,\Sigma,\delta,s,A)$  is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \in A\}.$$



- ullet  $\delta^*(oldsymbol{q}_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
- So what is L(M)???????



- ullet  $\delta^*(oldsymbol{q}_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
- So what is L(M)???????



- ullet  $\delta^*(oldsymbol{q}_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
- So what is L(M)???????



- $\bullet$   $\delta^*(q_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
- So what is L(M)???????



- $\bullet$   $\delta^*(q_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$
- So what is *L(M)*??????



• What is L(M) if start state is changed to  $q_1$ ?







• What is L(M) if final/accept states are set to  $\{q_2, q_3\}$  instead of  $\{q_0\}$ ?

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 58



• What is L(M) if final/accept states are set to  $\{q_2, q_3\}$  instead of  $\{q_0\}$ ?

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 58



• What is L(M) if final/accept states are set to  $\{q_2, q_3\}$  instead of  $\{q_0\}$ ?

### Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

**Exercise:** Prove by induction that for any two strings u, v, any state q,  $\delta^*(q, uv) = \delta^*(\delta^*(q, u), v)$ .

# THE END

...

(for now)

# Algorithms & Models of Computation CS/ECE 374, Fall 2020

**3.2** Constructing DFAs

### DFAs: State = Memory

How do we design a DFA M for a given language L? That is L(M) = L.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that
  it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

# DFA Construction: Examples

Example I: Basic languages

Assume 
$$\Sigma = \{0, 1\}$$
.  $L = \emptyset$ ,  $L = \Sigma^*$ ,  $L = \{\epsilon\}$ ,  $L = \{0\}$ .

### DFA Construction: Examples

Example II: Length divisible by 5

```
Assume \Sigma = \{0, 1\}.

L = \{w \in \{0, 1\}^* \mid |w| \text{ is divisible by 5}\}
```

### DFA Construction: examples

Example III: Ends with 01

```
Assume \Sigma = \{0, 1\}.

L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}
```

### DFA Construction: examples

Example IV: Contains 001

```
Assume \Sigma = \{0, 1\}.

L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ as substring}\}
```

### DFA Construction: examples

Example V: Contains 001 or 010

```
Assume \Sigma = \{0, 1\}.

L = \{w \in \{0, 1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}
```

### DFA construction examples

Example VI: Has a 1 exactly k positions from end

```
Assume \Sigma = \{0, 1\}.

L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}.
```

# DFA Construction: Example

```
L = \{ Binary numbers congruent to 0 \mod 5 \} Example:
```

- $1101011_2 = 107_{10} = 2 \mod 5$ ,

### Key observation:

$$val(w) \mod 5 = a \text{ implies}$$

$$val(w0) \mod 5 = (val(w) * 2) \mod 5 = 2a \mod 5$$

$$val(w1) \mod 5 = (val(w) \cdot 2 + 1) \mod 5 = (2a + 1) \mod 5$$

# $\mathrm{DFA}$ Construction: Example

 $L = \{ Binary numbers congruent to 0 \mod 5 \}$  Example:

- $1101011_2 = 107_{10} = 2 \mod 5$ ,
- $2 1010_2 = 10 = 0 \mod 5$

#### **Key observation:**

$$val(w) \mod 5 = a$$
 implies

$$val(w0) \mod 5 = (val(w) * 2) \mod 5 = 2a \mod 5$$

$$val(w1) \mod 5 = (val(w) \cdot 2 + 1) \mod 5 = (2a + 1) \mod 5$$

# THE END

...

(for now)

# Algorithms & Models of Computation CS/ECE 374, Fall 2020

**3.3** Complement language

**Question:** If M is a DFA, is there a DFA M' such that  $L(M') = \Sigma^* \setminus L(M)$ ? That is, are languages recognized by DFAs closed under complement?



Example...

Just flip the state of the states!





40 / 58

#### **Theorem**

Languages accepted by DFAs are closed under complement.

#### Proof

```
Let M=(Q,\Sigma,\delta,s,A) such that L=L(M).

Let M'=(Q,\Sigma,\delta,s,Q\setminus A). Claim: L(M')=\bar{L}. Why?

\delta_M^*=\delta_{M'}^*. Thus, for every string w, \delta_M^*(s,w)=\delta_{M'}^*(s,w).

\delta_M^*(s,w)\in A\Rightarrow \delta_{M'}^*(s,w)\not\in Q\setminus A. \delta_M^*(s,w)\not\in A\Rightarrow \delta_{M'}^*(s,w)\in Q\setminus A.
```

#### **Theorem**

Languages accepted by DFAs are closed under complement.

### Proof.

```
Let M=(Q,\Sigma,\delta,s,A) such that L=L(M).

Let M'=(Q,\Sigma,\delta,s,Q\setminus A). Claim: L(M')=\bar{L}. Why?

\delta_M^*=\delta_{M'}^*. Thus, for every string w, \delta_M^*(s,w)=\delta_{M'}^*(s,w).

\delta_M^*(s,w)\in A\Rightarrow \delta_{M'}^*(s,w)\not\in Q\setminus A. \delta_M^*(s,w)\not\in A\Rightarrow \delta_{M'}^*(s,w)\in Q\setminus A.
```

# Complement

#### **Theorem**

Languages accepted by DFAs are closed under complement.

#### Proof.

```
Let M=(Q,\Sigma,\delta,s,A) such that L=L(M).

Let M'=(Q,\Sigma,\delta,s,Q\setminus A). Claim: L(M')=\bar{L}. Why?

\delta_M^*=\delta_{M'}^*. Thus, for every string w,\,\delta_M^*(s,w)=\delta_{M'}^*(s,w).

\delta_M^*(s,w)\in A\Rightarrow \delta_{M'}^*(s,w)\not\in Q\setminus A. \delta_M^*(s,w)\not\in A\Rightarrow \delta_{M'}^*(s,w)\in Q\setminus A.
```

# THE END

...

(for now)

# Algorithms & Models of Computation CS/ECE 374, Fall 2020

**3.4** Product Construction

**Question:** Are languages accepted by DFAs closed under union? That is, given DFAs  $M_1$  and  $M_2$  is there a DFA that accepts  $L(M_1) \cup L(M_2)$ ? How about intersection  $L(M_1) \cap L(M_2)$ ?

Idea from programming: on input string w

- Simulate  $M_1$  on w
- Simulate  $M_2$  on w
- If both accept than  $w \in L(M_1) \cap L(M_2)$ . If at least one accepts then  $w \in L(M_1) \cup L(M_2)$ .
- Catch: We want a single DFA *M* that can only read *w* once.
- Solution: Simulate  $M_1$  and  $M_2$  in parallel by keeping track of states of both machines

**Question:** Are languages accepted by DFAs closed under union? That is, given DFAs  $M_1$  and  $M_2$  is there a DFA that accepts  $L(M_1) \cup L(M_2)$ ? How about intersection  $L(M_1) \cap L(M_2)$ ?

Idea from programming: on input string w

- Simulate  $M_1$  on w
- Simulate  $M_2$  on w
- If both accept than  $w \in L(M_1) \cap L(M_2)$ . If at least one accepts then  $w \in L(M_1) \cup L(M_2)$ .
- Catch: We want a single DFA *M* that can only read *w* once.
- Solution: Simulate  $M_1$  and  $M_2$  in parallel by keeping track of states of both machines

**Question:** Are languages accepted by DFAs closed under union? That is, given DFAs  $M_1$  and  $M_2$  is there a DFA that accepts  $L(M_1) \cup L(M_2)$ ? How about intersection  $L(M_1) \cap L(M_2)$ ?

Idea from programming: on input string w

- Simulate  $M_1$  on w
- Simulate  $M_2$  on w
- If both accept than  $w \in L(M_1) \cap L(M_2)$ . If at least one accepts then  $w \in L(M_1) \cup L(M_2)$ .
- ullet Catch: We want a single DFA M that can only read w once.
- Solution: Simulate  $M_1$  and  $M_2$  in parallel by keeping track of states of both machines

**Question:** Are languages accepted by DFAs closed under union? That is, given DFAs  $M_1$  and  $M_2$  is there a DFA that accepts  $L(M_1) \cup L(M_2)$ ? How about intersection  $L(M_1) \cap L(M_2)$ ?

Idea from programming: on input string w

- Simulate  $M_1$  on w
- Simulate  $M_2$  on w
- If both accept than  $w \in L(M_1) \cap L(M_2)$ . If at least one accepts then  $w \in L(M_1) \cup L(M_2)$ .
- Catch: We want a single DFA *M* that can only read *w* once.
- Solution: Simulate  $M_1$  and  $M_2$  in parallel by keeping track of states of both machines

# Example



# Example



**Cross-product machine** 

# Example II

Accept all binary strings of length divisible by 3 and  $5\,$ 



Har-Peled (UIUC) CS374 47 Fall 2020

47 / 58

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

$$ullet Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$$

- $s = (s_1, s_2)$
- ullet  $\delta: oldsymbol{Q} imes oldsymbol{\Sigma} o oldsymbol{Q}$  where

$$\delta((\boldsymbol{q}_1,\boldsymbol{q}_2),\boldsymbol{a})=(\delta_1(\boldsymbol{q}_1,\boldsymbol{a}),\delta_2(\boldsymbol{q}_2,\boldsymbol{a}))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_1, oldsymbol{s}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_2, oldsymb$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $\bullet \ \ \textit{\textbf{Q}} = \textit{\textbf{Q}}_1 \times \textit{\textbf{Q}}_2 = \{(\textit{\textbf{q}}_1, \textit{\textbf{q}}_2) \mid \textit{\textbf{q}}_1 \in \textit{\textbf{Q}}_1, \textit{\textbf{q}}_2 \in \textit{\textbf{Q}}_2\}$
- $s = (s_1, s_2)$
- ullet  $\delta: {m Q} imes {m \Sigma} o {m Q}$  where

$$\boldsymbol{\delta}((\boldsymbol{q}_1,\boldsymbol{q}_2),\boldsymbol{a}) = (\delta_1(\boldsymbol{q}_1,\boldsymbol{a}),\delta_2(\boldsymbol{q}_2,\boldsymbol{a}))$$

$$\bullet \ \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_1, oldsymbol{s}_1, oldsymbol{\delta}_1, oldsymbol{A}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_2, oldsymbol{s}_2, oldsymbol{\delta}_2, oldsymbol{s}_2, oldsymbol{\delta}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- ullet  $\delta: Q imes \Sigma o Q$  where

$$\delta((\boldsymbol{q}_1, \boldsymbol{q}_2), \boldsymbol{a}) = (\delta_1(\boldsymbol{q}_1, \boldsymbol{a}), \delta_2(\boldsymbol{q}_2, \boldsymbol{a}))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- ullet  $\delta: {m Q} imes {m \Sigma} o {m Q}$  where

$$\boldsymbol{\delta}((\boldsymbol{q}_1,\boldsymbol{q}_2),\boldsymbol{a})=(\delta_1(\boldsymbol{q}_1,\boldsymbol{a}),\delta_2(\boldsymbol{q}_2,\boldsymbol{a}))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- ullet  $\delta: Q imes \Sigma o Q$  where

$$\delta((\boldsymbol{q}_1,\boldsymbol{q}_2),\boldsymbol{a})=(\delta_1(\boldsymbol{q}_1,\boldsymbol{a}),\delta_2(\boldsymbol{q}_2,\boldsymbol{a}))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

$$ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$$

- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\mathbf{q}_1,\mathbf{q}_2),\mathbf{a})=(\delta_1(\mathbf{q}_1,\mathbf{a}),\delta_2(\mathbf{q}_2,\mathbf{a}))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\boldsymbol{q}_1, \boldsymbol{q}_2), \boldsymbol{a}) = (\delta_1(\boldsymbol{q}_1, \boldsymbol{a}), \delta_2(\boldsymbol{q}_2, \boldsymbol{a}))$$

 $\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$ 

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\boldsymbol{q}_1,\boldsymbol{q}_2),a)=(\delta_1(\boldsymbol{q}_1,a),\delta_2(\boldsymbol{q}_2,a))$$

$$\bullet \ A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_1, oldsymbol{s}_1, oldsymbol{A}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_2, oldsymbol{s}_2, oldsymbol{s}_2, oldsymbol{A}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \; m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \; | \; m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\boldsymbol{q}_1,\boldsymbol{q}_2),a)=(\delta_1(\boldsymbol{q}_1,a),\delta_2(\boldsymbol{q}_2,a))$$

$$\bullet \ \ \pmb{A} = \pmb{A}_1 \times \pmb{A}_2 = \{(\pmb{q}_1, \pmb{q}_2) \mid \pmb{q}_1 \in \pmb{A}_1, \pmb{q}_2 \in \pmb{A}_2\}$$

$$L(M) = L(M_1) \cap L(M_2).$$

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, \delta_1, extbf{ extit{s}}_1, extbf{ extit{A}}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, \delta_2, extbf{ extit{s}}_2, extbf{ extit{A}}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((oldsymbol{q}_1,oldsymbol{q}_2),oldsymbol{a})=(\delta_1(oldsymbol{q}_1,oldsymbol{a}),\delta_2(oldsymbol{q}_2,oldsymbol{a}))$$

$$ullet$$
  $m{A} = m{A}_1 imes m{A}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{A}_1, m{q}_2 \in m{A}_2\}$ 

$$L(M) = L(M_1) \cap L(M_2).$$

### Correctness of construction

#### Lemma

For each string w,  $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$ .

**Exercise:** Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

### Correctness of construction

#### Lemma

For each string w,  $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$ .

**Exercise:** Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

### Correctness of construction

#### Lemma

For each string w,  $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$ .

**Exercise:** Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

### Product construction for union

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_1, oldsymbol{s}_1, oldsymbol{A}_1) ext{ and } extbf{ extit{M}}_2 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_2, oldsymbol{s}_2, oldsymbol{s}_2, oldsymbol{A}_2)$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\boldsymbol{q}_1,\boldsymbol{q}_2),\boldsymbol{a}) = (\delta_1(\boldsymbol{q}_1,\boldsymbol{a}),\delta_2(\boldsymbol{q}_2,\boldsymbol{a}))$$

•  $A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\}$ 

$$L(M) = L(M_1) \cup L(M_2).$$

### Product construction for union

$$extbf{ extit{M}}_1 = ( extbf{ extit{Q}}_1, \Sigma, oldsymbol{\delta}_1, oldsymbol{s}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_1, oldsymbol{\delta}_2, oldsymb$$

Create  $M = (Q, \Sigma, \delta, s, A)$  where

- $ullet \ m{Q} = m{Q}_1 imes m{Q}_2 = \{(m{q}_1, m{q}_2) \mid m{q}_1 \in m{Q}_1, m{q}_2 \in m{Q}_2\}$
- $s = (s_1, s_2)$
- $\delta: Q \times \Sigma \rightarrow Q$  where

$$\delta((\boldsymbol{q}_1, \boldsymbol{q}_2), \boldsymbol{a}) = (\delta_1(\boldsymbol{q}_1, \boldsymbol{a}), \delta_2(\boldsymbol{q}_2, \boldsymbol{a}))$$

•  $A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\}$ 

$$L(M) = L(M_1) \cup L(M_2).$$

### Set Difference

#### **Theorem**

 $M_1$ ,  $M_2$  DFAs. There is a DFA M such that  $L(M) = L(M_1) \setminus L(M_2)$ .

**Exercise:** Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

# Things to know: 2-way DFA



**Question:** Why are DFAs required to only move right?

Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- ullet Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs

# Things to know: 2-way DFA



**Question:** Why are DFAs required to only move right?

Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs

Har-Peled (UIUC) CS374 52 Fall 2020 52 / 58

# THE END

...

(for now)

# Algorithms & Models of Computation

CS/ECE 374, Fall 2020

3.5

Supplemental: DFA philosophy

- Finite program = a program that uses a prespecified bounded amount of memory.
- @ Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite
   # states ≈ 2<sup>#</sup> of memory bits used by program
- lacktriangle Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- $\bigcirc$  DFA  $\neq$  programs.

- Finite program = a program that uses a prespecified bounded amount of memory.
- Q Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite
   # states ≈ 2<sup>#</sup> of memory bits used by program
- ① Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- $\bigcirc$  DFA  $\neq$  programs.

- lacktriangle Finite program = a program that uses a prespecified bounded amount of memory.
- Q Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite.
   # states ≈ 2<sup>#</sup> of memory bits used by program
- ① Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- $\bigcirc$  DFA  $\neq$  programs.

- lacktriangle Finite program = a program that uses a prespecified bounded amount of memory.
- Q Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite.
   # states ≈ 2<sup>#</sup> of memory bits used by program
- Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- $\bigcirc$  DFA  $\neq$  programs.

- lacktriangle Finite program = a program that uses a prespecified bounded amount of memory.
- Q Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite.
   # states ≈ 2<sup>#</sup> of memory bits used by program
- Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- $\bigcirc$  DFA  $\neq$  programs.

- lacktriangle Finite program = a program that uses a prespecified bounded amount of memory.
- Q Given DFA and input, easy to decide if DFA accepts input.
- A finite program is a DFA!
   # of states of memory of a finite program = finite.
   # states ≈ 2<sup>#</sup> of memory bits used by program
- Program using 1K memory = has...
- Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
- **1** DFA  $\neq$  programs.

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Oheckmate Mate!
- What is all this nonsense?

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Oheckmate Mate!
- What is all this nonsense?

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- 3 So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
- What is all this nonsense?

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
- What is all this nonsense?

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
- What is all this nonsense?

- Estimate # of atoms in the universe is  $10^{82}$ .
- Assuming each atom can store only finite number of bits.
- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
- What is all this nonsense?

## So what is going on...

- Theory models the world. (Oversimplifies it.)
- Make it possible to think about it.
- There are cases where theory does not model the world well.
- Mow when to apply the theory.
- Reject statements that are correct but not useful.
- Really Large finite numbers are

# THE END

...

(for now)