Deterministic Finite Automata (DFAs)

Lecture 3
Tuesday, September 1, 2020
3.1

DFA Introduction

DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
- Vending machines
- Elevators
- Digital watches
- Simple network protocols
- Programs with fixed memory

A simple program

Program to check if a given input string w has odd length
int $\boldsymbol{n}=0$
While input is not finished
\quad read next character \boldsymbol{c}
$\boldsymbol{n} \leftarrow \boldsymbol{n}+1$
endWhile
If (\boldsymbol{n} is odd) output YES
Else output NO

```
bit x =0
    While input is not finished
        read next character c
                x \leftarrowflip(x)
    endWhile
    If (x=1) output YES
    Else output NO
```


A simple program

Program to check if a given input string w has odd length
int $\boldsymbol{n}=0$
While input is not finished
\quad read next character \boldsymbol{c}
$\boldsymbol{n} \leftarrow \boldsymbol{n}+1$
endWhile
If (\boldsymbol{n} is odd) output YES
Else output NO

$$
\begin{aligned}
& \text { bit } \boldsymbol{x}=0 \\
& \text { While input is not finished } \\
& \quad \text { read next character } \boldsymbol{c} \\
& \quad \boldsymbol{x} \leftarrow \text { flip }(\boldsymbol{x}) \\
& \text { endWhile } \\
& \text { If }(\boldsymbol{x}=1) \text { output YES } \\
& \text { Else output NO }
\end{aligned}
$$

Another view

- Machine has input written on a read-only tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine accepts input string if it is in an accepting state after scanning the last symbol.

Draw me a sheep DFA

DFA to check if a given input string has odd length

THE END

(for now)

3.1.1

Graphical representation of DFA

Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in Σ
- For each state (vertex) \boldsymbol{q} and symbol $\boldsymbol{a} \in \Sigma$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as $\boldsymbol{s}, \boldsymbol{q}_{0}$ or "start")
- Some states with double circles labeled as accepting/final states

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one etter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state \boldsymbol{q} by reading one letter of w from left to right.

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out \boldsymbol{w} ends in an accepting state.

Definition

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out \boldsymbol{w} ends in an accepting state.

Definition

-

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.
It means that M accepts each string in L and no others. Equivalently M accepts each string in \boldsymbol{L} and does not accept/rejects strings in $\Sigma^{*} \backslash \boldsymbol{L}$.
M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.
It means that M accepts each string in L and no others. Equivalently M accepts each string in \boldsymbol{L} and does not accept/rejects strings in $\Sigma^{*} \backslash \boldsymbol{L}$.
M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

THE END

(for now)

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
3.1.2

Formal definition of DFA

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in \Omega$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_{0} for start state, F for final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $\Delta \subseteq \cap$ is the set of accenting/final states.

Common alternate notation: q_{0} for start state, F for final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \Sigma \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_{0} for start state, F for final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \Sigma \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: q_{0} for start state, F for final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \Sigma \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: \boldsymbol{Q} \times \Sigma \rightarrow \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Common alternate notation: \boldsymbol{q}_{0} for start state, \boldsymbol{F} for final states.

DFA Notation

Example

- $\boldsymbol{Q}=\left\{q_{0}, q_{1}, q_{1}, q_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $\begin{aligned} \mathbf{s} & =q_{0} \\ A & =\left\{q_{0}\right\}\end{aligned}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
$-s=q_{0}$
- $A=\left\{q_{0}\right\}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
-
- $s=q_{0}$
- $\mathbf{A}=\left\{q_{0}\right\}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{0}$,

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $\boldsymbol{s}=q_{0}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{0}$
- $A=\left\{q_{0}\right\}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{0}$
- $\boldsymbol{A}=\left\{q_{0}\right\}$

Example

- $Q=\left\{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}, \boldsymbol{q}_{1}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{0}$
- $A=\left\{q_{0}\right\}$

Example: The transition function

state \boldsymbol{q}	input \boldsymbol{c}	result $\delta(\boldsymbol{q}, \boldsymbol{c})$
\boldsymbol{Q}	Σ	Σ
\boldsymbol{q}_{0}	0	\boldsymbol{q}_{3}
\boldsymbol{q}_{0}	1	\boldsymbol{q}_{1}
\boldsymbol{q}_{1}	0	\boldsymbol{q}_{0}
\boldsymbol{q}_{1}	1	\boldsymbol{q}_{2}
\boldsymbol{q}_{2}	0	\boldsymbol{q}_{2}
\boldsymbol{q}_{2}	1	\boldsymbol{q}_{2}
\boldsymbol{q}_{3}	0	\boldsymbol{q}_{2}
\boldsymbol{q}_{3}	1	\boldsymbol{q}_{0}

THE END

(for now)

3.1.3

Extending the transition function to strings

Extending the transition function to strings

Given DFA $M=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A}), \boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{a})$ is the state that M goes to from \boldsymbol{q} on reading letter a

Useful to have notation to specify the unique state that M will reach from \boldsymbol{q} on reading string w

Transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(\boldsymbol{a}, \boldsymbol{w})=\boldsymbol{a}$ if $w=\boldsymbol{\epsilon}$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Extending the transition function to strings

Given DFA $M=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A}), \boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{a})$ is the state that M goes to from \boldsymbol{q} on reading letter a

Useful to have notation to specify the unique state that M will reach from \boldsymbol{q} on reading string w

Transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{q}$ if $\boldsymbol{w}=\boldsymbol{\epsilon}$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Formal definition of language accepted by M

Definition

The language $L(M)$ accepted by a $\operatorname{DFA} M=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \in A\right\}
$$

Example

What is:

- $\delta^{*}\left(\boldsymbol{q}_{1}, \boldsymbol{\epsilon}\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{1}, 010\right)$
- $\delta^{*}\left(q_{4}, 10\right)$
- So what is L(M)??????

Example

What is:

- $\delta^{*}\left(\boldsymbol{q}_{1}, \epsilon\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{4}, 10\right)$
- So what is $L(M)$??????

Example

What is:

- $\delta^{*}\left(\boldsymbol{q}_{1}, \epsilon\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{1}, 010\right)$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{1}, 010\right)$
- $\delta^{*}\left(q_{4}, 10\right)$

Example

What is:

- $\delta^{*}\left(q_{1}, \epsilon\right)$
- $\delta^{*}\left(q_{0}, 1011\right)$
- $\delta^{*}\left(q_{1}, 010\right)$
- $\delta^{*}\left(q_{4}, 10\right)$
- So what is $L(M) ? ? ? ? ? ?$

Example continued

- What is $L(M)$ if start state is changed to \boldsymbol{q}_{1} ?

Example continued

Old version:

- What is $L(M)$ if final/accept states are set to $\left\{\boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$ instead of $\left\{\boldsymbol{q}_{0}\right\}$?

Example continued

- What is $L(M)$ if final/accept states are set to $\left\{\boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$ instead of $\left\{\boldsymbol{q}_{0}\right\}$?

Example continued

- What is $L(M)$ if final/accept states are set to $\left\{\boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$ instead of $\left\{\boldsymbol{q}_{0}\right\}$?

Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings $\boldsymbol{u}, \boldsymbol{v}$, any state \boldsymbol{q}, $\delta^{*}(q, u v)=\delta^{*}\left(\delta^{*}(q, u), v\right)$.

THE END

(for now)

3.2
 Constructing DFAs

DFAs: State $=$ Memory

How do we design a DFA M for a given language L ? That is $L(M)=L$.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

DFA Construction: Examples
Example I: Basic languages
Assume $\Sigma=\{0,1\}$.
$L=\emptyset, L=\Sigma^{*}, L=\{\epsilon\}, L=\{0\}$.

DFA Construction: Examples

Example II: Length divisible by 5
Assume $\Sigma=\{0,1\}$.
$L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is divisible by 5$\}$

DFA Construction: examples

Assume $\Sigma=\{0,1\}$.
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 01$\}$

DFA Construction: examples

Assume $\Sigma=\{0,1\}$.
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 001 as substring $\}$

DFA Construction: examples

Assume $\Sigma=\{0,1\}$.
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 001 or 010 as substring $\}$

DFA construction examples

Example VI: Has a 1 exactly k positions from end
Assume $\Sigma=\{0,1\}$.
$L=\{w \mid w$ has a $1 k$ positions from the end $\}$.

DFA Construction: Example

$L=\{$ Binary numbers congruent to $0 \bmod 5\}$
Example:
(1) $1101011_{2}=107_{10}=2 \bmod 5$,
(2) $1010_{2}=10=0 \bmod 5$

Key observation:

$\operatorname{val}(w) \bmod 5=\boldsymbol{a}$ implies
$\operatorname{val}(w 0) \quad \bmod 5=(\operatorname{val}(w) * 2) \bmod 5=2 a \bmod 5$ $\operatorname{val}(w 1) \bmod 5=(\operatorname{val}(w) \cdot 2+1) \bmod 5=(2 a+1) \bmod 5$

DFA Construction: Example

$L=\{$ Binary numbers congruent to $0 \bmod 5\}$
Example:
(1) $1101011_{2}=107_{10}=2 \bmod 5$,
(2) $1010_{2}=10=0 \bmod 5$

Key observation:

$\operatorname{val}(w) \bmod 5=\boldsymbol{a}$ implies

$$
\operatorname{val}(\boldsymbol{w} 0) \quad \bmod 5=(\operatorname{val}(\boldsymbol{w}) * 2) \quad \bmod 5=2 \boldsymbol{a} \bmod 5
$$

$$
\operatorname{val}(\boldsymbol{w} 1) \bmod 5=(\operatorname{val}(\boldsymbol{w}) \cdot 2+1) \bmod 5=(2 \boldsymbol{a}+1) \bmod 5
$$

THE END

(for now)

3.3

Complement language

Complement

Question: If M is a DFA, is there a DFA M^{\prime} such that $L\left(M^{\prime}\right)=\Sigma^{*} \backslash L(M)$? That is, are languages recognized by DFAs closed under complement?

Complement

Example..

Just flip the state of the states!

Complement

Theorem

Languages accepted by DFAs are closed under complement.

```
Proof.
Let M = (Q, \Sigma, \delta,s,A) such that L = L(M).
Let }\mp@subsup{M}{}{\prime}=(Q,\Sigma,\delta,s,Q\A).Claim: L(M')=L.Why
\delta
\delta
```


Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M=(Q, \Sigma, \delta, s, A)$ such that $L=L(M)$.
Let $M^{\prime}=(Q, \Sigma, \delta, s, Q \backslash A)$. Claim: $L\left(M^{\prime}\right)=\bar{L}$. Why?

Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M=(Q, \Sigma, \delta, s, A)$ such that $L=L(M)$.
Let $M^{\prime}=(Q, \Sigma, \delta, s, Q \backslash A)$. Claim: $L\left(M^{\prime}\right)=\bar{L}$. Why?
$\delta_{M}^{*}=\delta_{M^{\prime}}^{*}$. Thus, for every string $w, \delta_{M}^{*}(s, w)=\delta_{M^{\prime}}^{*}(s, w)$.
$\delta_{M}^{*}(s, w) \in A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \notin Q \backslash A . \delta_{M}^{*}(s, w) \notin A \Rightarrow \delta_{M^{\prime}}^{*}(s, w) \in Q \backslash A$.

THE END

(for now)

3.4

Product Construction

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
-
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_{1} and M_{2} is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$?

Idea from programming: on input string w

- Simulate M_{1} on w
- Simulate M_{2} on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate M_{1} and M_{2} in parallel by keeping track of states of both machines

Example

Example

Cross-product machine

Example II

Accept all binary strings of length divisible by 3 and 5

Product construction for intersection

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)
$$

Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $s=\left(s_{1}, s_{2}\right)$

$$
\delta\left(\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right), a\right)=\left(\delta_{1}\left(\boldsymbol{q}_{1}, a\right), \delta_{2}\left(\boldsymbol{q}_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, \boldsymbol{q}_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{q}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{q}{2}{}\in\mp@subsup{Q}{2}{}
    - s=( }\mp@subsup{s}{1}{},\mp@subsup{S}{2}{}
    - }\delta:Q\times\Sigma->Q wher
                                    \delta((q}\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a)
- A= A A < A A = {(q},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{q}{1}{}\in\mp@subsup{A}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{A}{2}{}
```


Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{Q}{2}{}
    - }\delta:Q\times\Sigma->Q wher
                                    \delta((\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a))
- A= A A < A A = {(q
```


Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{\boldsymbol{q}}{1}{},\mp@subsup{\boldsymbol{q}}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{Q}{2}{}
    - s=
    0 }\delta:Q\times\Sigma->Q wher
                                    \delta((\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a))
- A= A A < A A = {(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{A}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{A}{2}{}}
```


Theorem

Product construction for intersection

$$
\begin{aligned}
& M_{1}=\left(\boldsymbol{Q}_{1}, \Sigma, \boldsymbol{\delta}_{1}, s_{1}, \boldsymbol{A}_{1}\right) \text { and } \boldsymbol{M}_{2}=\left(\boldsymbol{Q}_{1}, \Sigma, \boldsymbol{\delta}_{2}, \boldsymbol{s}_{2}, \boldsymbol{A}_{2}\right) \\
& \text { Create } \boldsymbol{M}=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A}) \text { where } \\
& \bullet \boldsymbol{Q}=\boldsymbol{Q}_{1} \times \boldsymbol{Q}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{Q}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{Q}_{2}\right\} \\
& \text { • } \boldsymbol{s}=\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right) \\
& \text { • } \delta: Q \times \Sigma \rightarrow Q \text { where } \\
& \qquad \delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right) \\
& A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}
\end{aligned}
$$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\boldsymbol{\delta}\left(\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right), \boldsymbol{a}\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, \boldsymbol{q}_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\boldsymbol{A}_{1} \times \boldsymbol{A}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$

Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\boldsymbol{A}_{1} \times \boldsymbol{A}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by

induction on w

Correctness of construction

Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$

Product construction for union

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{Q}_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}\right.$ or $\left.q_{2} \in A_{2}\right\}$

Product construction for union

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \Sigma, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}\right.$ or $\left.\boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$

Theorem

$L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Set Difference

Theorem

M_{1}, M_{2} DFAs. There is a DFA M such that $L(M)=L\left(M_{1}\right) \backslash L\left(M_{2}\right)$.
Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

Things to know: 2-way DFA

Question: Why are DFAs required to only move right?
Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via

Things to know: 2-way DFA

Question: Why are DFAs required to only move right?
Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs

THE END

(for now)

3.5

Supplemental: DFA philosophy

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA!
\# of states of memory of a finite program = finite
\# states ≈ 2 \# of memory bits used by program
(Program using $1 K$ memory $=$ has
© Turing halting theorem: Not possible (in general) to decide if a program stops on an input
(6) DFA \neq programs

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA!
\# of states of memory of a finite program $=$ finite
$\#$ states ≈ 2 \# of memory bits used by program
(9) Program using 1 K memory $=$ has
(3) Turing halting theorem: Not possible (in general) to decide if a program stops on an input
(6) DFA \neq programs

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA!
\# of states of memory of a finite program $=$ finite.
$\#$ states ≈ 2 \# of memory bits used by program
(Program using $1 K$ memory $=$ has.
(3) Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
(© DFA \neq programs.

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA!
\# of states of memory of a finite program $=$ finite.
\# states ≈ 2 \# of memory bits used by program
(4) Program using $1 K$ memory $=$ has...
© Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
(6) $\mathrm{DFA} \neq$ programs

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA! \# of states of memory of a finite program $=$ finite.
\# states ≈ 2 \# of memory bits used by program
(9) Program using $1 K$ memory $=$ has...
(5) Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
(6) DFA \neq programs.

A finite program can be simulated by a DFA...

(1) Finite program $=$ a program that uses a prespecified bounded amount of memory.
(2) Given DFA and input, easy to decide if DFA accepts input.
(3) A finite program is a DFA! \# of states of memory of a finite program $=$ finite.
\# states ≈ 2 \# of memory bits used by program
(9) Program using $1 K$ memory $=$ has...
(5) Turing halting theorem: Not possible (in general) to decide if a program stops on an input.
((DFA \neq programs.

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
© Assuming each atom can store only finite number of bits.

- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
© Checkmate Mate!
© What is all this nonsense?

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
(2) Assuming each atom can store only finite number of bits.

- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
© What is all this nonsense?

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
(2) Assuming each atom can store only finite number of bits.
© So... number of states of the universe is finite!

- So... All programs in this universe are DFAs.
- Checkmate Mate!
(0) What is all this nonsense?

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
(2) Assuming each atom can store only finite number of bits.

- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
© Checkmate Mate!
© What is all this nonsense?

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
(2) Assuming each atom can store only finite number of bits.

- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
- Checkmate Mate!
© What is all this nonsense?

But universe is finite...

(1) Estimate \# of atoms in the universe is 10^{82}.
(2) Assuming each atom can store only finite number of bits.

- So... number of states of the universe is finite!
- So... All programs in this universe are DFAs.
(0) Checkmate Mate!
© What is all this nonsense?

So what is going on...

(1) Theory models the world. (Oversimplifies it.)
(2) Make it possible to think about it.
(There are cases where theory does not model the world well.

- Know when to apply the theory.
(Reject statements that are correct but not useful.
- Really Large finite numbers are

THE END

(for now)

