Algorithms & Models of Computation CS/ECE 374, Fall 2020

Strings and Languages

Lecture 1 Tuesday, August 25, 2020

LATEXed: September 1, 2020 21:18

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.1 Strings

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets

- $\Sigma = \{0,1\}$,
- $\Sigma = \{a, b, c, \ldots, z\}$,
- ASCII.

• UTF8.

• $\Sigma = \{ \langle moveforward \rangle, \langle moveback \rangle \}$

Alphabet

An alphabet is a **finite** set of symbols. Examples of alphabets:

- $\Sigma = \{0,1\}$,
- $\Sigma = \{a, b, c, ..., z\}$,
- ASCII.
- UTF8.
- $\Sigma = \{ \langle moveforward \rangle, \langle moveback \rangle \}$

String Definitions

Definition

- A string/word over Σ is a finite sequence of symbols over Σ. For example, '0101001', 'string', '(moveback)(rotate90)'
- **2** ϵ is the empty string.
- The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$
- Sor integer n ≥ 0, Σⁿ is set of all strings over Σ of length n. Σ^{*} is the set of all strings over Σ.

Inductive/recursive definition of strings

Formal definition of a string:

- ϵ is a string of length 0
- ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

Alternative recursive definition useful in some proofs: xa is a string if a ∈ Σ and x is a string. The length of xa is 1 + |x|

Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, \ldots denote strings
- A, B, C, ... denote sets of strings

Much ado about nothing

- ϵ is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- Ø is the empty set. It contains no strings.
- $\{\emptyset\}$ is a set containing one element, which itself is a set that contains no elements.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- *xy* sometimes written as *x y*.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: *uv* not necessarily equal to *vu*
- The identity element is the empty string ϵ :

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is <u>associative</u>: (uv)w = u(vw) hence write uvw = (uv)w = u(vw)
- not commutative: *uv* not necessarily equal to *vu*
- The identity element is the empty string ϵ :

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: *uv* not necessarily equal to *vu*
- The identity element is the empty string ϵ :

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu

• The identity element is the empty string ϵ :

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

Substrings, prefix, suffix

Definition

v is substring of $w \iff$ there exist strings x, y such that w = xvy.

- If $x = \epsilon$ then v is a prefix of w
- If $y = \epsilon$ then v is a suffix of w

String exponents

Definition

If w is a string then w^n is defined inductively as follows: $w^n = \epsilon$ if n = 0 $w^n = ww^{n-1}$ if n > 0

Example: $(blah)^4 = blahblahblahblah$.

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$oldsymbol{XY} = \{ xy \mid x \in oldsymbol{X}, y \in oldsymbol{Y} \}$$

Example $X = \{fido, rover, spot\},$ $Y = \{fluffy, tabby\}$ \Rightarrow $XY = \{fidofluffy, fidotabby, roverfluffy, ... \}.$

Σ^* and languages

Definition

• Σ^n is the set of all strings of length n. Defined inductively: $\Sigma^n = \{\epsilon\}$ if n = 0 $\Sigma^n = \Sigma\Sigma^{n-1}$ if n > 0

- **2** $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings
- $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Σ^{*} and languages

Definition

Σⁿ is the set of all strings of length n. Defined inductively:
 Σⁿ = {ε} if n = 0
 Σⁿ = ΣΣⁿ⁻¹ if n > 0

- **2** $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings
- $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

- What is Σ^0 ?
- **2** How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **(**) Does Σ^* have strings of infinite length?
- If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **(2)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

THE END

(for now)

. . .

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.1.1

Exercise solved in detail

Answer the following questions taking $\Sigma = \{0, 1\}$. • What is Σ^0 ?

- (2) How many elements are there in Σ^3 ?
- **(3)** How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- Ooes Σ* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- **2** How many elements are there in Σ^3 ?
- I How many elements are there in Σ"?
- What is the length of the longest string in Σ ?
- Ooes Σ* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- **2** How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- Ooes Σ* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- 2 How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- Does Σ* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- 2 How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **(**) Does Σ^* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- 2 How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **(**) Does Σ^* have strings of infinite length?

• If
$$|u| = 2$$
 and $|v| = 3$ then what is $|u \cdot v|$?

- **(1)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- 2 How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **o** Does Σ^* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(2)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Answer the following questions taking $\Sigma = \{0, 1\}$.

- What is Σ^0 ?
- 2 How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **o** Does Σ^* have strings of infinite length?
- If $|\boldsymbol{u}| = 2$ and $|\boldsymbol{v}| = 3$ then what is $|\boldsymbol{u} \cdot \boldsymbol{v}|$?
- **(2)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?

• Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- What is Σ^0 ?
- **2** How many elements are there in Σ^3 ?
- How many elements are there in Σ^n ?
- What is the length of the longest string in Σ ?
- **(**) Does Σ^* have strings of infinite length?
- If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **(2)** Let **u** be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

THE END

(for now)

. . .

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.2

Countable sets, countably infinite sets, and languages

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} imes\mathbb{N}=\{(\pmb{i},\pmb{j})\mid \pmb{i},\pmb{j}\in\mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} imes\mathbb{N}=\{(\pmb{i},\pmb{j})\mid \pmb{i},\pmb{j}\in\mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

Definition

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^{i}3^{j}$.

$\mathbb{N} \times \mathbb{N}$ is countable

- • • • •
-
-
-
-
-
-
-

$\mathbb{N}\times\mathbb{N}$ is countable

Canonical order and countability of strings

Definition

A set X is countably infinite (countable and infinite) if there is a bijection f between the natural numbers and X.

Alternatively: X is countably infinite if X is an infinite set and there enumeration of elements of X.

Theorem

Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise II

Answer the following questions taking $\Sigma = \{0, 1\}$.

- Is a finite set countable?
- **2** X is countable, and the set $Y \subseteq X$, then is the set Y countable?
- **③** If X and Y are countable, is $X \setminus Y$ countable?
- Are all infinite sets countably infinite?
- If X_i is a countable infinite set, for i = 1, ..., 700, is $\bigcup_i X_i$ countable infinite?
- If X_i is a countable infinite set, for $i = 1, ..., is \cup_i X_i$ countable infinite?
- \bigcirc Let X be a countable infinite set, and consider its power set

 $2^{\boldsymbol{X}} = \{ \boldsymbol{Y} \mid \boldsymbol{Y} \subseteq \boldsymbol{x} \} \,.$

The statement "the set $2^{\mathbf{X}}$ is countable" is correct?

THE END

(for now)

. . .

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.3 Inductive proofs on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition
The reverse
$$w^R$$
 of a string w is defined as follows:
• $w^R = \epsilon$ if $w = \epsilon$
• $w^R = x^R a$ if $w = ax$ for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $oldsymbol{u},oldsymbol{v}\in\Sigma^*$, $(oldsymbol{u}oldsymbol{v})^{oldsymbol{R}}=oldsymbol{v}^{oldsymbol{R}}oldsymbol{u}^{oldsymbol{R}}$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

DefinitionThe reverse
$$w^R$$
 of a string w is defined as follows:• $w^R = \epsilon$ if $w = \epsilon$ • $w^R = x^R a$ if $w = ax$ for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Induction is a way to prove statements of the form $\forall n \ge 0$, P(n) where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- Base case: Prove **P**(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any n ≤ k.
- Induction Step: Prove that P(n) holds, for n = k + 1.

Structured induction

- Unlike simple cases we are working with...
- Ininduction proofs also work for more complicated "structures".
- Such as strings, tuples of strings, graphs etc.
- See class notes on induction for details.

Proving the theorem

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

```
Proof: by induction.
On what?? |uv| = |u| + |v|?
|u|?
|v|?
```

What does it mean "induction on |u|"?

1.3.1: Three proofs by induction

1.3.1.1:Induction on |u|

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$. No assumption about v, hence statement holds for all $v \in \Sigma^*$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \ge 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about v, hence statement holds for all $v \in \Sigma^*$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. Base case: Let u be an arbitrary string of length 0. $u = \epsilon$ since there is only one such

string. Then

$$(uv)^{R} = (\epsilon v)^{R} = v^{R} = v^{R} \epsilon = v^{R} \epsilon^{R} = v^{R} u^{R}$$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n: For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$. No assumption about v, hence statement holds for all $v \in \Sigma^*$.

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

1.3.1.2: A failed attempt: Induction on |v|

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any string v of length n: For all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$.

Base case: Let v be an arbitrary string of length 0. $v = \epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

1.3.1.3:Induction on |u| + |v|

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive step: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

THE END

(for now)

. . .

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.4 Languages

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$\mathbf{L}^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ \mathbf{L} \bullet (\mathbf{L}^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \ge 0} L^n$, and $L^+ = \bigcup_{n \ge 1} L^n$

Exercise

Problem

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- Is $\epsilon = \{\epsilon\}$? Is $\emptyset = \{\epsilon\}$?
- **2** What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
- What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- If $|\mathbf{A}| = 2$ and $|\mathbf{B}| = 3$, what is $|\mathbf{A} \cdot \mathbf{B}|$?

Exercise

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- What is \emptyset^0 ?
- **2** If |L| = 2, then what is $|L^4|$?
- 3 What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- For what L is L* finite?
- **(3)** What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f : \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program M check if M halts on empty input
- Posts Correspondence problem

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function f : Σ* → {0,1} define language
 L_f = {w ∈ Σ* | f(w) = 1}
- Given language L ⊆ Σ* define boolean function f : Σ* → {0,1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

Given boolean function f : Σ* → {0,1} define language
 L_f = {w ∈ Σ* | f(w) = 1}

 Given language L ⊆ Σ* define boolean function f : Σ* → {0,1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

• Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language

 $L_f = \{ w \in \Sigma^* \mid f(w) = 1 \}$

Given language L ⊆ Σ* define boolean function f : Σ* → {0, 1} as follows:
 f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function *f* to compute? How difficult is the recognizing *L_f*? Why two different views? Helpful in understanding different aspects?

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

How many languages are there? The answer my friend is blowing in the slides.

Recall:

Definition

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\Sigma^*)$ is **not** countable for any finite Σ .

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\Sigma^*)$ is **not** countable for any finite Σ .

Cantor's diagonalization argument

Theorem (Cantor)

 $\mathbb{P}(\mathbb{N})$ is not countable.

- Suppose ℙ(ℕ) is countable infinite. Let S₁, S₂,..., be an enumeration of all subsets of numbers.
- Let **D** be the following diagonal subset of numbers.

 $D = \{i \mid i \not\in S_i\}$

- Since **D** is a set of numbers, by assumption, $D = S_j$ for some j.
- Question: Is $j \in D$?

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting languors uncomputable?
- Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting languors uncomputable?
- Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem

The set of all finite languages is countable.

THE END

(for now)

. . .

Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.5

Overview of whats coming on finite automata/complexity

Finite languages.

egular languages.

- Regular expressions.
- ② DFA: Deterministic finite automata.
- INFA: Non-deterministic finite automata.
- Languages that are not regular.
- Ontext free languages (stack).
- Iuring machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

Finite languages.

egular languages.

- Regular expressions.
- ② DFA: Deterministic finite automata.
- **3** NFA: Non-deterministic finite automata.
- Languages that are not regular.
- Ontext free languages (stack).
- Iuring machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - ② DFA: Deterministic finite automata.
 - INFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Ontext free languages (stack).
- Iuring machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - INFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Ontext free languages (stack).
- Iuring machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **3** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Ontext free languages (stack).
- Iuring machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - **1** Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **③** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Context free languages (stack).
- Turing machines: Decidable languages.
- Image TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - **1** Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **③** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Sontext free languages (stack).
- Iuring machines: Decidable languages.
- Image TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **③** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Sontext free languages (stack).
- Turing machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **③** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Sontext free languages (stack).
- Turing machines: Decidable languages.
- TM Undecidable languages (halting theorem).

TM Unrecognizable languages.

- Finite languages.
- egular languages.
 - Regular expressions.
 - **2** DFA: Deterministic finite automata.
 - **③** NFA: Non-deterministic finite automata.
 - Languages that are not regular.
- Sontext free languages (stack).
- Turing machines: Decidable languages.
- TM Undecidable languages (halting theorem).
- TM Unrecognizable languages.

THE END

(for now)

. . .