Algorithms \& Models of Computation CS/ECE 374, Fall 2020
24.4

Proof of Cook-Levin Theorem

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
24.4.1

Statement and sketch of idea for the proof

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).
 SAT is NP-Complete.

We have already seen that SAT is in NP.
Need to prove that every language $L \in N P, L \leq_{p}$ SAT
Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin).
 SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT
Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

The plot against SAT

High-level plan to proving the Cook-Levin theorem
What does it mean that $L \in N P$?
$\boldsymbol{L} \in \boldsymbol{N P}$ implies that there is a non-deterministic TM \boldsymbol{M} and polynomial $\boldsymbol{p}()$ such that

$$
\boldsymbol{L}=\left\{\boldsymbol{x} \in \Sigma^{*} \mid \boldsymbol{M} \text { accepts } \boldsymbol{x} \text { in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text { steps }\right\}
$$

```
Input: M,x,p.
Question: Does M stops on input x after p(|x|) steps?
```

Describe a reduction R that computes from $\mathbf{M , x , p}$ a SAT formula φ.
$\rightarrow \boldsymbol{R}$ takes as input a string \boldsymbol{x} and outputs a SAT formula φ

- R runs in time polynomial in $|x|,|M|$
> $x \in L$ if and only if φ is satisfiable

The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in N P$?
$\boldsymbol{L} \in \boldsymbol{N} \boldsymbol{P}$ implies that there is a non-deterministic TM \boldsymbol{M} and polynomial $\boldsymbol{p}()$ such that

$$
\boldsymbol{L}=\left\{\boldsymbol{x} \in \Sigma^{*} \mid \boldsymbol{M} \text { accepts } \boldsymbol{x} \text { in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text { steps }\right\}
$$

Input: M, x, p.
Question: Does \boldsymbol{M} stops on input \boldsymbol{x} after $\boldsymbol{p}(|\boldsymbol{x}|)$ steps?
Describe a reduction R that computes from M, x, p a SAT formula φ - \boldsymbol{R} takes as input a string x and outputs a SAT formula φ - \boldsymbol{R} runs in time polynomial in $|\boldsymbol{x}|,|\boldsymbol{M}|$ $\Rightarrow x \in L$ if and only if φ is satisfiable

The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in N P$?
$\boldsymbol{L} \in \boldsymbol{N P}$ implies that there is a non-deterministic TM \boldsymbol{M} and polynomial $\boldsymbol{p}()$ such that

$$
\boldsymbol{L}=\left\{\boldsymbol{x} \in \Sigma^{*} \mid \boldsymbol{M} \text { accepts } \boldsymbol{x} \text { in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text { steps }\right\}
$$

Input: M, x, p.
Question: Does M stops on input \boldsymbol{x} after $\boldsymbol{p}(|\boldsymbol{x}|)$ steps?
Describe a reduction \boldsymbol{R} that computes from $\boldsymbol{M}, \boldsymbol{x}, \boldsymbol{p}$ a SAT formula φ.

- \boldsymbol{R} takes as input a string \boldsymbol{x} and outputs a SAT formula φ
- \boldsymbol{R} runs in time polynomial in $|\boldsymbol{x}|,|\boldsymbol{M}|$
- $x \in L$ if and only if φ is satisfiable

The plot against SAT continued

φ is satisfiable if and only if $\boldsymbol{x} \in \boldsymbol{L}$
φ is satisfiable if and only if nondeterministic M accepts x in $p(|x|)$ steps

BIG IDEA

$>\varphi$ will express " M on input x accepts in $p(|x|)$ steps'
$\rightarrow \varphi$ will encode a computation history of M on x
φ : CNF formula s.t if we have a satisfying assignment to it \Rightarrow accepting
computation of \boldsymbol{M} on \boldsymbol{x} down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).

The plot against SAT continued

φ is satisfiable if and only if $x \in L$
$\boldsymbol{\varphi}$ is satisfiable if and only if nondeterministic \boldsymbol{M} accepts \boldsymbol{x} in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

- φ will express " \boldsymbol{M} on input \boldsymbol{x} accepts in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps"
- φ will encode a computation history of M on \boldsymbol{x}
φ : CNF formula s.t if we have a satisfying assignment to it \Rightarrow accepting
computation of \boldsymbol{M} on \boldsymbol{x} down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).

The plot against SAT continued

φ is satisfiable if and only if $x \in L$
$\boldsymbol{\varphi}$ is satisfiable if and only if nondeterministic \boldsymbol{M} accepts \boldsymbol{x} in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

BIG IDEA

- φ will express " \boldsymbol{M} on input \boldsymbol{x} accepts in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps"
- φ will encode a computation history of \boldsymbol{M} on \boldsymbol{x}

The plot against SAT continued

φ is satisfiable if and only if $\boldsymbol{x} \in \boldsymbol{L}$
$\boldsymbol{\varphi}$ is satisfiable if and only if nondeterministic \boldsymbol{M} accepts \boldsymbol{x} in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

BIG IDEA

- φ will express " \boldsymbol{M} on input \boldsymbol{x} accepts in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps"
- φ will encode a computation history of \boldsymbol{M} on \boldsymbol{x}
φ : CNF formula s.t if we have a satisfying assignment to it \Longrightarrow accepting computation of \boldsymbol{M} on \boldsymbol{x} down to the last details (where the head is, what transition is chosen, what the tape contents are, at each step, etc).

The Matrix Executions

Tableau of Computation

\boldsymbol{M} runs in time $\boldsymbol{p}(|\boldsymbol{x}|)$ on \boldsymbol{x}. Entire computation of \boldsymbol{M} on \boldsymbol{x} can be represented by a "tableau"

Row \boldsymbol{i} gives contents of all cells at time \boldsymbol{i}
At time $\mathbf{0}$ tape has input \boldsymbol{x} followed by blanks
Each row long enough to hold all cells \boldsymbol{M} might ever have scanned.

Variables of φ

Four types of variables to describe computation of \boldsymbol{M} on \boldsymbol{x}

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

For $h=1, \ldots, p(|x|), b \in \Gamma, i=0, \ldots, p(|x|)$.

- $\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i}):$ read/write head is at position \boldsymbol{h} at time \boldsymbol{i}.

Fir $\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{p}(|\boldsymbol{x}|)$, and $\boldsymbol{i}=\mathbf{0}, \ldots, \boldsymbol{p}(|\boldsymbol{x}|)$

- $\boldsymbol{S}(\boldsymbol{q}, \boldsymbol{i})$ state of \boldsymbol{M} is \boldsymbol{q} at time \boldsymbol{i}.

For all $\boldsymbol{q} \in \boldsymbol{Q}$ and $\boldsymbol{i}=\mathbf{0}, \ldots, \boldsymbol{p}(|\boldsymbol{x}|)$.

- I(j,i) instruction number \boldsymbol{j} is executed at time \boldsymbol{i}
M is non-deterministic, need to specify transitions in some way. Number transitions as $\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{\ell}$ where \boldsymbol{j} th transition is $<\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}>$ indication $\left(\boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}\right) \in \boldsymbol{\delta}\left(\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}\right)$, direction $\boldsymbol{d}_{\boldsymbol{j}} \in\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$.
Number of variables is $\boldsymbol{O}\left(\boldsymbol{p}(|x|)^{2}|M|^{2}\right)$

Notation

Some abbreviations for ease of notation $\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $x_{1} \vee x_{2} \vee \ldots \vee x_{m}$
$\oplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value $\mathbf{1}$

Making sure that one of the variables is true: $\bigvee_{i=1}^{k} x_{i}$

Notation

Some abbreviations for ease of notation
$\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $x_{1} \vee x_{2} \vee \ldots \vee x_{m}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value $\mathbf{1}$:

$$
\bigwedge_{1 \leq i<j \leq k}\left(\overline{x_{i}} \vee \overline{x_{j}}\right)
$$

Making sure that one of the variables is true: $\bigvee_{i=1}^{k} x_{i}$

Notation

Some abbreviations for ease of notation
$\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $\boldsymbol{x}_{1} \vee \boldsymbol{x}_{2} \vee \ldots \vee \boldsymbol{x}_{m}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value $\mathbf{1}$:

$$
\bigwedge_{1 \leq i<j \leq k}\left(\overline{x_{i}} \vee \overline{x_{j}}\right)
$$

Making sure that one of the variables is true: $\bigvee_{i=1}^{k} \boldsymbol{x}_{\boldsymbol{i}}$.

Notation

Some abbreviations for ease of notation
$\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $x_{1} \vee x_{2} \vee \ldots \vee x_{m}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value $\mathbf{1}$:

$$
\bigwedge_{1 \leq i<j \leq k}\left(\overline{x_{i}} \vee \overline{x_{j}}\right)
$$

Making sure that one of the variables is true: $\bigvee_{i=1}^{k} \boldsymbol{x}_{\boldsymbol{i}}$.

$$
\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\bigwedge_{1 \leq i<j \leq k}\left(\overline{x_{i}} \vee \overline{x_{j}}\right) \bigwedge\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)
$$

Clauses of φ

φ is the conjunction of $\mathbf{8}$ clause groups:

$$
\varphi=\bigwedge_{i=1}^{12} \varphi_{i}
$$

where each φ_{i} is a CNF formula. Described in subsequent slides.
Property: φ is satisfied \Longleftrightarrow there is an execution of M on \boldsymbol{x} that accepts the language in $\boldsymbol{p}(|\boldsymbol{x}|)$ time.

THE END

(for now)

