Algorithms & Models of Computation CS/ECE 374, Fall 2020

24.4 Proof of Cook-Levin Theorem

Algorithms & Models of Computation CS/ECE 374, Fall 2020

24.4.1 Statement and sketch of idea for the proof

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin). *SAT is* NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that every language $L \in NP$, $L \leq_P SAT$

Difficulty: Infinite number of languages in **NP**. Must <u>simultaneously</u> show a <u>generic</u> reduction strategy.

Cook-Levin Theorem

Theorem 24.1 (Cook-Levin). SAT is NP-Complete.

We have already seen that **SAT** is in **NP**.

Need to prove that every language $L \in NP$, $L \leq_P SAT$

Difficulty: Infinite number of languages in **NP**. Must <u>simultaneously</u> show a <u>generic</u> reduction strategy.

The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $L = \{x \in \Sigma^* \mid M \text{ accepts } x \text{ in at most } p(|x|) \text{ steps} \}$

Input: M, x, p. Question: Does M stops on input x after p(|x|) steps?

Describe a reduction **R** that computes from M, x, p a **SAT** formula φ .

- \blacktriangleright **R** takes as input a string **x** and outputs a SAT formula φ
- **R** runs in time polynomial in |x|, |M|
- $\blacktriangleright x \in L \text{ if and only if } \varphi \text{ is satisfiable}$

The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $\boldsymbol{L} = \{\boldsymbol{x} \in \Sigma^* \mid \boldsymbol{M} \text{ accepts } \boldsymbol{x} \text{ in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text{ steps} \}$

Input: M, x, p. Question: Does M stops on input x after p(|x|) steps?

Describe a reduction **R** that computes from M, x, p a **SAT** formula φ .

- \triangleright **R** takes as input a string **x** and outputs a SAT formula φ
- **R** runs in time polynomial in |x|, |M|
- $x \in L$ if and only if φ is satisfiable

The plot against SAT

High-level plan to proving the Cook-Levin theorem

What does it mean that $L \in NP$?

 $L \in NP$ implies that there is a non-deterministic TM M and polynomial p() such that

 $\boldsymbol{L} = \{\boldsymbol{x} \in \Sigma^* \mid \boldsymbol{M} \text{ accepts } \boldsymbol{x} \text{ in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text{ steps} \}$

Input: M, x, p. **Question:** Does M stops on input x after p(|x|) steps?

Describe a reduction **R** that computes from M, x, p a **SAT** formula φ .

- \blacktriangleright **R** takes as input a string **x** and outputs a SAT formula φ
- **R** runs in time polynomial in |x|, |M|
- $x \in L$ if and only if φ is satisfiable

arphi is satisfiable if and only if $\pmb{x} \in \pmb{L}$

 φ is satisfiable if and only if nondeterministic **M** accepts **x** in $p(|\mathbf{x}|)$ steps

BIG IDEA

- $\triangleright \varphi$ will express "**M** on input **x** accepts in $p(|\mathbf{x}|)$ steps"
- φ will encode a computation history of **M** on **x**

 φ is satisfiable if and only if $x \in L$

 φ is satisfiable if and only if nondeterministic **M** accepts **x** in $p(|\mathbf{x}|)$ steps

BIG IDEA

- $\triangleright \varphi$ will express "**M** on input **x** accepts in $p(|\mathbf{x}|)$ steps"
- φ will encode a computation history of **M** on **x**

 φ is satisfiable if and only if $x \in L$

 φ is satisfiable if and only if nondeterministic **M** accepts **x** in $p(|\mathbf{x}|)$ steps

BIG IDEA

- φ will express "*M* on input *x* accepts in p(|x|) steps"
- φ will encode a computation history of **M** on **x**

 φ is satisfiable if and only if $x \in L$

 φ is satisfiable if and only if nondeterministic **M** accepts **x** in $p(|\mathbf{x}|)$ steps

BIG IDEA

- φ will express "*M* on input *x* accepts in p(|x|) steps"
- φ will encode a computation history of **M** on **x**

The Matrix Executions

Tableau of Computation

M runs in time p(|x|) on x. Entire computation of **M** on x can be represented by a "tableau"

Row *i* gives contents of all cells at time *i* At time **0** tape has input *x* followed by blanks Each row long enough to hold all cells *M* might ever have scanned.

Variables of arphi

Four types of variables to describe computation of M on x

- ► T(b, h, i): tape cell at position h holds symbol b at time i. For $h = 1, ..., p(|x|), b \in \Gamma, i = 0, ..., p(|x|)$.
- H(h, i): read/write head is at position h at time i. Fir $h = 1, \dots, p(|x|)$, and $i = 0, \dots, p(|x|)$
- S(q, i) state of M is q at time i. For all $q \in Q$ and $i = 0, \dots, p(|x|)$.

▶ I(j, i) instruction number j is executed at time i M is non-deterministic, need to specify transitions in some way. Number transitions as $1, 2, ..., \ell$ where jth transition is $\langle q_j, b_j, q'_j, b'_j, d_j \rangle$ indication $(q'_j, b'_j, d_j) \in \delta(q_j, b_j)$, direction $d_j \in \{-1, 0, 1\}$.

Number of variables is $O(p(|x|)^2 |M|^2)$

Some abbreviations for ease of notation $\bigwedge_{k=1}^m x_k$ means $x_1 \land x_2 \land \ldots \land x_m$

 $\bigvee_{k=1}^m x_k$ means $x_1 \lor x_2 \lor \ldots \lor x_m$

 $\bigoplus(x_1, x_2, \ldots, x_k)$ is a formula that means **exactly one** of x_1, x_2, \ldots, x_m is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

 $\bigwedge_{1 \le i < j \le k} (\overline{x_i} \lor \overline{x_j})$

$$\bigoplus(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{\mathbf{x}_i} \vee \overline{\mathbf{x}_j}) \bigwedge (\mathbf{x}_1 \vee \mathbf{x}_2 \vee \cdots \vee \mathbf{x}_k).$$

Some abbreviations for ease of notation $\bigwedge_{k=1}^m x_k$ means $x_1 \land x_2 \land \ldots \land x_m$

 $\bigvee_{k=1}^m x_k$ means $x_1 \lor x_2 \lor \ldots \lor x_m$

 $\bigoplus(x_1, x_2, \ldots, x_k)$ is a formula that means **exactly one** of x_1, x_2, \ldots, x_m is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

 $\bigwedge_{1 \le i < j \le k} (\overline{x_i} \lor \overline{x_j})$

$$\bigoplus(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{\mathbf{x}_i} \vee \overline{\mathbf{x}_j}) \bigwedge (\mathbf{x}_1 \vee \mathbf{x}_2 \vee \cdots \vee \mathbf{x}_k).$$

Some abbreviations for ease of notation $\bigwedge_{k=1}^m x_k$ means $x_1 \land x_2 \land \ldots \land x_m$

 $\bigvee_{k=1}^m x_k$ means $x_1 \lor x_2 \lor \ldots \lor x_m$

 $\bigoplus(x_1, x_2, \ldots, x_k)$ is a formula that means **exactly one** of x_1, x_2, \ldots, x_m is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

 $\bigwedge_{1 \le i < j \le k} (\overline{x_i} \lor \overline{x_j})$

$$\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1 \le i < j \le k} (\overline{x_i} \lor \overline{x_j}) \bigwedge (x_1 \lor x_2 \lor \cdots \lor x_k).$$

Some abbreviations for ease of notation $\bigwedge_{k=1}^m x_k$ means $x_1 \land x_2 \land \ldots \land x_m$

 $\bigvee_{k=1}^m x_k$ means $x_1 \lor x_2 \lor \ldots \lor x_m$

 $\bigoplus(x_1, x_2, \ldots, x_k)$ is a formula that means **exactly one** of x_1, x_2, \ldots, x_m is true. Can be converted to CNF form

CNF formula showing making sure that at most one variable is assigned value 1:

 $\bigwedge_{1 \le i < j \le k} (\overline{x_i} \lor \overline{x_j})$

$$\bigoplus(x_1, x_2, \ldots, x_k) = \bigwedge_{1 \leq i < j \leq k} (\overline{x_i} \vee \overline{x_j}) \bigwedge (x_1 \vee x_2 \vee \cdots \vee x_k).$$

Clauses of φ

 φ is the conjunction of **8** clause groups:

$$arphi = \bigwedge_{i=1}^{12} arphi_i$$

where each φ_i is a CNF formula. Described in subsequent slides.

Property: φ is satisfied \iff there is an execution of **M** on **x** that accepts the language in $p(|\mathbf{x}|)$ time.

THE END

(for now)

. . .