Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Circuit satisfiability and Cook-Levin Theorem

Lecture 24
Thursday, December 3, 2020

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
24.1

Recap

Recap

NP: languages that have non-deterministic polynomial time algorithms
A language L is NP-Complete if and only if

- L is in NP
- for every \boldsymbol{L}^{\prime} in $N P, L^{\prime} S_{p} L$
\boldsymbol{L} is NP-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{p} \boldsymbol{L}$.

Theorem 24.1 (Cook-Levin).

SAT is NP-Complete.

Recap

NP: languages that have non-deterministic polynomial time algorithms
A language L is NP-Complete if and only if

- L is in NP
- for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$
\boldsymbol{L} is NP-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{p} \boldsymbol{L}$.

Theorem 24.1 (Cook-Levin)
SAT is NP-Complete.

Recap

NP: languages that have non-deterministic polynomial time algorithms
A language L is NP-Complete if and only if

- \boldsymbol{L} is in NP
- for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$
\boldsymbol{L} is $\mathbf{N P}$-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$.

Theorem 24.1 (Cook-Levin).

 SAT is NP-Complete.
Recap

NP: languages that have non-deterministic polynomial time algorithms
A language L is NP-Complete if and only if

- \boldsymbol{L} is in NP
- for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$
\boldsymbol{L} is $\mathbf{N P}$-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$.

Theorem 24.1 (Cook-Levin).

SAT is NP-Complete.

Pictorial View

\mathbf{P} and $\mathbf{N P}$

Possible scenarios:

1. $\mathbf{P}=\mathbf{N P}$.
2. $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?
Theorem 21.2 (Ladnor).
If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $X \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

\mathbf{P} and $\mathbf{N P}$

Possible scenarios:

1. $P=N P$.
2. $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?
Theorem 24.2 (Ladner).
If $\mathbf{P} \neq \mathbf{N P}$ then there is a problem/language $\boldsymbol{X} \in \mathbf{N P} \backslash \mathbf{P}$ such that \boldsymbol{X} is not NP-Complete.

\mathbf{P} and $\mathbf{N P}$

Possible scenarios:

1. $\mathbf{P}=\mathbf{N P}$.
2. $\mathbf{P} \neq \mathrm{NP}$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?
Theorem 24.2 (Ladner).
If $\mathbf{P} \neq \mathbf{N P}$ then there is a problem/language $\boldsymbol{X} \in \mathbf{N P} \backslash \mathbf{P}$ such that \boldsymbol{X} is not NP-Complete.

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set. \Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{p} Independent Set, Independent Set \leq_{p} Vertex Cover \Longrightarrow Independent Set \approx_{p} Vertex Cover
3. 3 SAT \leq_{p} SAT, SAT \leq_{p} 3SAT \Longrightarrow 3SAT \approx_{p} SAT.
4. 3 SAT \leq_{p} Independent Set

Exercise (or Cook-Levin theorem): Independent Set \leq_{p} SAT \Longrightarrow 3SAT \approx_{p} Independent Set.
5. SAT \leq_{p} Hamiltonian Cycle Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{P} 3SAT \Longrightarrow Hamiltonian Cycle \approx_{P} 3SAT
6. Clique \approx_{p} Independent Set \approx_{p} Vertex Cover \approx_{p} 3SAT \approx_{P} SAT \approx_{P} Hamiltonian Cycle

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{P} Independent Set, Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{P} Vertex Cover.
3. 3 SAT \leq_{p} SAT, SAT \leq_{p} 3SAT $\Longrightarrow 3 S A T \approx_{p}$ SAT.
4. 3 SAT \leq_{p} Independent Set

Exercise (or Cook-Levin theorem): Independent Set \leq_{p} SAT \Longrightarrow 3SAT \approx_{p} Independent Set.
5. SAT \leq_{P} Hamiltonian Cycle Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{p} 3SAT \Longrightarrow Hamiltonian Cycle \approx_{p} 3SAT
6. Clique \approx_{P} Independent Set \approx_{p} Vertex Cover \approx_{P} 3SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{P} Independent Set, Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{p} Vertex Cover.
3. $3 \mathrm{SAT} \leq_{P}$ SAT, SAT \leq_{P} 3SAT \Longrightarrow 3SAT \approx_{P} SAT.
4. 3 SAT \leq_{p} Independent Set Exercise (or Cook-Levin theorem): Independent Set \leq_{P} SAT \Longrightarrow 3SAT \approx_{p} Independent Set
5. SAT \leq_{p} Hamiltonian Cycle Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{P} 3SAT \Rightarrow Hamiltonian Cycle \approx_{P} 3SAT
6. Clique \approx_{p} Independent Set \approx_{p} Vertex Cover \approx_{p} 3SAT \approx_{P} SAT \approx_{P} Hamiltonian Cycle

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{P} Independent Set, Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{p} Vertex Cover.
3. $3 \mathrm{SAT} \leq_{P}$ SAT, SAT \leq_{P} 3SAT \Rightarrow 3SAT \approx_{P} SAT.
4. 3 SAT \leq_{P} Independent Set .

Exercise (or Cook-Levin theorem): Independent Set \leq_{P} SAT
\Longrightarrow 3SAT \approx_{P} Independent Set.
5. SAT \leq_{p} Hamiltonian Cycle

Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{P} 3SAT \Rightarrow Hamiltonian Cycle \approx_{P} 3SAT
6. Clique \approx_{p} Independent Set \approx_{p} Vertex Cover \approx_{p} 3SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{P} Independent Set, Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{P} Vertex Cover.
3. $3 \mathrm{SAT} \leq_{P}$ SAT, SAT \leq_{P} 3SAT \Rightarrow 3SAT \approx_{P} SAT.
4. 3 SAT \leq_{P} Independent Set .

Exercise (or Cook-Levin theorem): Independent Set \leq_{P} SAT
\Longrightarrow 3SAT \approx_{P} Independent Set.
5. SAT \leq_{P} Hamiltonian Cycle

Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{P} 3SAT \Longrightarrow Hamiltonian Cycle \approx_{P} 3SAT
6. Clique \approx_{p} Independent Set \approx_{p} Vertex Cover \approx_{p} 3SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

What do we know so far

1. Independent Set \leq_{P} Clique, Clique \leq_{P} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
2. Vertex Cover \leq_{P} Independent Set, Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{p} Vertex Cover.
3. $3 \mathrm{SAT} \leq_{P}$ SAT, SAT \leq_{P} 3SAT \Longrightarrow 3SAT \approx_{P} SAT.
4. 3 SAT \leq_{p} Independent Set .

Exercise (or Cook-Levin theorem): Independent Set \leq_{p} SAT
\Longrightarrow 3SAT \approx_{P} Independent Set.
5. SAT \leq_{P} Hamiltonian Cycle

Exercise (or Cook-Levin theorem): Hamiltonian Cycle \leq_{P} 3SAT
\Longrightarrow Hamiltonian Cycle \approx_{p} 3SAT
6. Clique ${\underset{\sim}{P}}$ Independent Set ${\underset{\sim}{P}}$ Vertex Cover ${\underset{\sim}{P}}_{P}$ 3SAT \approx_{P} SAT \approx_{P} Hamiltonian Cycle

NP Completeness

Clique \approx_{p} Independent Set \approx_{p} Vertex Cover $\approx_{p} 3$ SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

NP Completeness

Clique \approx_{p} Independent Set \approx_{p} Vertex Cover $\approx_{p} 3$ SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

All these problems are in NP.

SAT is NPC

All these problems are NP-Complete.

NP Completeness

Clique \approx_{p} Independent Set \approx_{p} Vertex Cover $\approx_{p} 3$ SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

NP Completeness

Clique \approx_{p} Independent Set \approx_{p} Vertex Cover $\approx_{p} 3$ SAT \approx_{p} SAT \approx_{p} Hamiltonian Cycle

All these problems are in NP.

SAT is NPC.

All these problems are NP-Complete.

THE END

(for now)

