Algorithms & Models of Computation CS/ECE 374, Fall 2020

Circuit satisfiability and Cook-Levin Theorem

Lecture 24 Thursday, December 3, 2020

LATEXed: October 30, 2020 13:43

Algorithms & Models of Computation CS/ECE 374, Fall 2020

24.1 Recap

NP: languages that have non-deterministic polynomial time algorithms

A language *L* is **NP-Complete** if and only if

- ► *L* is in NP
- ▶ for every L' in **NP**, $L' \leq_P L$

```
L is NP-Hard if for every L' in NP, L' \leq_P L.
```

Theorem 24.1 (Cook-Levin). SAT is NP-Complete.

NP: languages that have non-deterministic polynomial time algorithms

A language *L* is **NP-Complete** if and only if

- L is in NP
- ▶ for every L' in **NP**, $L' \leq_P L$

```
L is NP-Hard if for every L' in NP, L' \leq_P L.
```

Theorem 24.1 (Cook-Levin). SAT is NP-Complete.

NP: languages that have non-deterministic polynomial time algorithms

A language *L* is **NP-Complete** if and only if

- L is in NP
- ▶ for every L' in **NP**, $L' \leq_P L$

L is **NP-Hard** if for every *L'* in **NP**, $L' \leq_P L$.

Theorem 24.1 (Cook-Levin). SAT is NP-Complete.

NP: languages that have non-deterministic polynomial time algorithms

A language *L* is **NP-Complete** if and only if

- L is in NP
- ▶ for every L' in **NP**, $L' \leq_P L$

```
L is NP-Hard if for every L' in NP, L' \leq_P L.
```

Theorem 24.1 (Cook-Levin). SAT is NP-Complete.

Pictorial View

P and NP

Possible scenarios:

- 1. $\mathbf{P} = \mathbf{NP}$.
- 2. **P** ≠ **NP**

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem 24.2 (Ladner).

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

P and **NP**

Possible scenarios:

- 1. $\mathbf{P} = \mathbf{NP}$.
- 2. $\mathbf{P} \neq \mathbf{NP}$

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem 24.2 (Ladner).

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

P and **NP**

Possible scenarios:

- 1. $\mathbf{P} = \mathbf{NP}$.
- 2. **P** ≠ **NP**

Question: Suppose $P \neq NP$. Is every problem in $NP \setminus P$ also NP-Complete?

Theorem 24.2 (Ladner).

If $P \neq NP$ then there is a problem/language $X \in NP \setminus P$ such that X is not NP-Complete.

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. **3SAT** \leq_P **SAT**, **SAT** \leq_P **3SAT** \implies **3SAT** \cong_P **SAT**.
- 4. 3SAT ≤_P Independent Set .
 Exercise (or Cook-Levin theorem): Independent Set ≤_P SAT
 ⇒ 3SAT ≊_P Independent Set.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≥_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. 3SAT \leq_P SAT, SAT \leq_P 3SAT \implies 3SAT \cong_P SAT.
- 4. 3SAT ≤_P Independent Set .
 Exercise (or Cook-Levin theorem): Independent Set ≤_P SAT
 ⇒ 3SAT ≊_P Independent Set.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≈_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. 3SAT \leq_P SAT, SAT \leq_P 3SAT \implies 3SAT \cong_P SAT.
- 4. 3SAT ≤_P Independent Set .
 Exercise (or Cook-Levin theorem): Independent Set ≤_P SAT
 ⇒ 3SAT ≊_P Independent Set.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≈_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. 3SAT \leq_P SAT, SAT \leq_P 3SAT \implies 3SAT \cong_P SAT.
- 4. $3SAT \leq_P \text{Independent Set}$. Exercise (or Cook-Levin theorem): Independent Set $\leq_P SAT \implies 3SAT \cong_P \text{Independent Set}$.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≈_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. 3SAT \leq_P SAT, SAT \leq_P 3SAT \implies 3SAT \cong_P SAT.
- 4. $3SAT \leq_P \text{Independent Set}$. Exercise (or Cook-Levin theorem): Independent Set $\leq_P SAT \implies 3SAT \cong_P \text{Independent Set}$.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≈_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

- 1. Independent Set \leq_P Clique, Clique \leq_P Independent Set. \implies Clique \cong_P Independent Set.
- 2. Vertex Cover \leq_P Independent Set, Independent Set \leq_P Vertex Cover. \implies Independent Set \cong_P Vertex Cover.
- 3. 3SAT \leq_P SAT, SAT \leq_P 3SAT \implies 3SAT \cong_P SAT.
- 4. 3SAT ≤_P Independent Set .
 Exercise (or Cook-Levin theorem): Independent Set ≤_P SAT
 ⇒ 3SAT ≅_P Independent Set.
- 5. SAT ≤_P Hamiltonian Cycle
 Exercise (or Cook-Levin theorem): Hamiltonian Cycle ≤_P 3SAT
 ⇒ Hamiltonian Cycle ≈_P 3SAT
- 6. Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

All these problems are in **NP**.

SAT is NPC.

Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

All these problems are in **NP**.

SAT is NPC.

Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

All these problems are in **NP**.

SAT is NPC.

Clique \cong_P Independent Set \cong_P Vertex Cover \cong_P 3SAT \cong_P SAT \cong_P Hamiltonian Cycle

All these problems are in **NP**.

SAT is NPC.

THE END

(for now)

. . .