Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

23.3.2

The reduction: Encoding the formula constraints

3SAT \leq_{p} Directed Hamiltonian Cycle

Input: φ formula.
Output: Graph \boldsymbol{G}_{φ}.

Saw: How to encode assignments... Now need to encode constraints of φ.

The reduction algorithm: Phase I

Converting φ to a graph

- Traverse path \boldsymbol{i} from left to right iff $\boldsymbol{x}_{\boldsymbol{i}}$ is set to true
- Each path has $\mathbf{3}(\boldsymbol{m}+\mathbf{1})$ nodes where \boldsymbol{m} is number of clauses in φ; nodes numbered from left to right (1 to $3 m+3$)

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4} \quad \neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4} \quad \neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction algorithm: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $\mathbf{3} \boldsymbol{j}$ and to vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause $\boldsymbol{C}_{\boldsymbol{j}}$, and has edge from vertex $\mathbf{3} \boldsymbol{j}+\mathbf{1}$ and to vertex $\mathbf{3} \boldsymbol{j}$ if $\neg \boldsymbol{x}_{\boldsymbol{i}}$ appears in $\boldsymbol{C}_{\boldsymbol{j}}$.

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

THE END

(for now)

