Algorithms & Models of Computation CS/ECE 374, Fall 2020

23.2 Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?

Lemma 23.1. Independent set is in NP.

Independent Set

Problem: Independent Set

Instance: A graph G, integer *k*. **Question:** Is there an independent set in G of size *k*?

Lemma 23.1. Independent set is in NP.

$3SAT \leq_{P} Independent Set$

The reduction $3SAT \leq_P$ Independent Set

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 ${\it G}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3 CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_{P} Independent Set$

The reduction $3SAT \leq_P$ Independent Set

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3 CNF formulas – reduction would not work for other kinds of boolean formulas.

$3SAT \leq_{P} Independent Set$

The reduction $3SAT \leq_P$ Independent Set

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

There are two ways to think about **3SAT**

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

- 1. G_{φ} will have one vertex for each literal in a clause
- 2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 4. Take **k** to be the number of clauses

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying arphi

Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness

Proposition 23.2.

 φ is satisfiable iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- $\leftarrow \text{Let } \textbf{S} \text{ be an independent set of size } \textbf{k}$
 - 1. \boldsymbol{S} must contain exactly one vertex from each clause
 - 2. \boldsymbol{S} cannot contain vertices labeled by conflicting literals
 - 3. Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause

Summary

Theorem 23.3. Independent set is NP-Complete (i.e., NPC).

THE END

(for now)

. . .