Algorithms \& Models of Computation CS/ECE 374, Fall 2020

## 23.2 <br> Reducing 3-SAT to Independent Set

## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $\boldsymbol{k}$.
Question: Is there an independent set in G of size $\boldsymbol{k}$ ?

Independent set is in NP

## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $\boldsymbol{k}$.
Question: Is there an independent set in $G$ of size $\boldsymbol{k}$ ?

## Lemma 23.1.

Independent set is in NP.

## 3 SAT $\leq_{p}$ Independent Set

## The reduction 3SAT $\leq_{p}$ Independent Set

Input: Given a 3CNF formula $\varphi$
Goal: Construct a graph $\boldsymbol{G}_{\varphi}$ and number $\boldsymbol{k}$ such that $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ if and only if $\boldsymbol{\varphi}$ is satisfiable.

```
G
```

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas - reduction would not work for other kinds of boolean formulas

## $3 S A T \leq_{p}$ Independent Set

## The reduction 3SAT $\leq_{p}$ Independent Set

Input: Given a 3CNF formula $\varphi$
Goal: Construct a graph $\boldsymbol{G}_{\varphi}$ and number $\boldsymbol{k}$ such that $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ if and only if $\boldsymbol{\varphi}$ is satisfiable.
$\boldsymbol{G}_{\varphi}$ should be constructable in time polynomial in size of $\varphi$

> Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

> Notice: We handle only 3CNF formulas - reduction would not work for other kinds of boolean formulas.

## 3SAT $\leq_{p}$ Independent Set

## The reduction 3 SAT $\leq_{p}$ Independent Set

Input: Given a 3CNF formula $\varphi$
Goal: Construct a graph $\boldsymbol{G}_{\varphi}$ and number $\boldsymbol{k}$ such that $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ if and only if $\boldsymbol{\varphi}$ is satisfiable.
$\boldsymbol{G}_{\varphi}$ should be constructable in time polynomial in size of $\varphi$
Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas - reduction would not work for other kinds of boolean formulas.

## Interpreting 3SAT

There are two ways to think about 3SAT

1. Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
2. Pick a literal from each clause and find a truth assignment to make all of them true

## We will take the second view of 3SAT to construct the reduction

## Interpreting 3SAT

There are two ways to think about 3SAT

1. Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
2. Pick a literal from each clause and find a truth assignment to make all of them true

## We will take the second view of 3SAT to construct the reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT

1. Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
2. Pick a literal from each clause and find a truth assignment to make all of them true

We will take the second view of 3SAT to construct the reduction.

## Interpreting 3SAT

There are two ways to think about 3SAT

1. Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
2. Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick $x_{i}$ and $\neg x_{i}$
We will take the second view of 3SAT to construct the reduction.

## The Reduction

1. $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take $\boldsymbol{k}$ to be the number of clauses


Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

1. $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take $\boldsymbol{k}$ to be the number of clauses


Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

1. $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take $\boldsymbol{k}$ to be the number of clauses


Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

1. $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take $k$ to be the number of clauses


Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

1. $\boldsymbol{G}_{\varphi}$ will have one vertex for each literal in a clause
2. Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
3. Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
4. Take $\boldsymbol{k}$ to be the number of clauses


Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## Correctness

## Proposition 23.2.

$\varphi$ is satisfiable iff $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ (= number of clauses in $\varphi$ ).

## Proof.

$\Rightarrow$ Let $\boldsymbol{a}$ be the truth assignment satisfying $\varphi$

> Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size. Why?

## Correctness

## Proposition 23.2.

$\varphi$ is satisfiable iff $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ (= number of clauses in $\varphi$ ).

## Proof.

$\Rightarrow$ Let $\boldsymbol{a}$ be the truth assignment satisfying $\varphi$

- Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size. Why?


## Correctness

## Proposition 23.2.

$\varphi$ is satisfiable iff $\boldsymbol{G}_{\varphi}$ has an independent set of size $\boldsymbol{k}$ (= number of clauses in $\varphi$ ).

## Proof.

$\Leftarrow$ Let $\boldsymbol{S}$ be an independent set of size $\boldsymbol{k}$

1. $\boldsymbol{S}$ must contain exactly one vertex from each clause
2. $\boldsymbol{S}$ cannot contain vertices labeled by conflicting literals
3. Thus, it is possible to obtain a truth assignment that makes in the literals in $S$ true; such an assignment satisfies one literal in every clause

## Summary

Theorem 23.3.
Independent set is NP-Complete (i.e., NPC).

## THE END

(for now)

