Algorithms \& Models of Computation

23.1.3
 Other NP Complete Problems

Proving that a problem \mathbf{X} is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show

1. Show that \boldsymbol{X} is in NP.
2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

SAT $\leq_{p} \boldsymbol{X}$ implies that every NP problem $\boldsymbol{Y} \leq_{p} \boldsymbol{X}$. Why?
Transitivity of reductions:
$Y \leq_{p}$ SAT and SAT $\leq_{p} X$ and hence $Y \leq_{p} X$

Proving that a problem \mathbf{X} is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show

1. Show that \boldsymbol{X} is in NP.
2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

SAT $\leq_{P} \boldsymbol{X}$ implies that every NP problem $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$. Why? Transitivity of reductions:
$\boldsymbol{Y} \leq_{p} \boldsymbol{S A T}$ and $\boldsymbol{S A T} \leq_{p} \boldsymbol{X}$ and hence $\boldsymbol{Y} \leq_{p} \boldsymbol{X}$.

Proving that a problem \mathbf{X} is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show

1. Show that \boldsymbol{X} is in NP.
2. Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

SAT $\leq_{p} \boldsymbol{X}$ implies that every NP problem $\boldsymbol{Y} \leq_{p} \boldsymbol{X}$. Why? Transitivity of reductions:
$\boldsymbol{Y} \leq_{P} \boldsymbol{S A T}$ and $\boldsymbol{S A T} \leq_{P} \boldsymbol{X}$ and hence $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$.

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_{P} 3-SAT as we saw

NP-Completeness via Reductions

1. SAT is NP-Complete due to Cook-Levin theorem
2. SAT $\leq_{p} 3$-SAT
3. 3-SAT \leq_{p} Independent Set
4. Independent Set \leq_{p} Vertex Cover
5. Independent Set \leq_{p} Clique
6. 3-SAT $\leq_{p} 3$-Color
7. 3-SAT \leq_{p} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

1. SAT is NP-Complete due to Cook-Levin theorem
2. SAT \leq_{P} 3-SAT
3. 3-SAT \leq_{P} Independent Set
4. Independent Set \leq_{P} Vertex Cover
5. Independent Set \leq_{p} Clique
6. 3-SAT \leq_{P} 3-Color
7. 3-SAT \leq_{P} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

THE END

(for now)

