
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

NP and NP Completeness
Lecture 23
Tuesday, December 1, 2020

LATEXed: October 27, 2020 13:58

1 / 63



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

23.1
NP-Completeness: Cook-Levin Theorem
FLNAME:23.1.0.0 ZZZ:23.1.0.0 NP-Completeness: Cook-Levin Theorem

2 / 63



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

23.1.1
Completeness
FLNAME:23.1.1.0 ZZZ:23.1.1.0 Completeness

3 / 63



NP: Non-deterministic polynomial
Definition 23.1.
A decision problem is in NP, if it has a polynomial time certifier, for all the all the YES
instances.

Definition 23.2.
A decision problem is in co-NP, if it has a polynomial time certifier, for all the all the
NO instances.

Example 23.3.
1. 3SAT is in NP.
2. But Not3SAT is in co-NP.

4 / 63



In the beginning...

5 / 63



In the beginning...
Undecidable

5 / 63



In the beginning...
Undecidable

EXP

5 / 63



In the beginning...
Undecidable

EXP
PSPACE

5 / 63



In the beginning...
Undecidable

EXP
PSPACE

P

5 / 63



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

5 / 63



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 63



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 63



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

5 / 63



In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

5 / 63



“Hardest” Problems
Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1. Hardest problem must be in NP.
2. Hardest problem must be at least as “difficult” as every other problem in NP.

6 / 63



NP-Complete Problems
Definition 23.4.
A problem X is said to be NP-Complete if

1. X ∈ NP, and
2. (Hardness) For any Y ∈ NP, Y ≤P X.

7 / 63



Solving NP-Complete Problems
Proposition 23.5.
Suppose X is NP-Complete. Then X can be solved in polynomial time ⇐⇒
P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

0.1 Let Y ∈ NP. We know Y ≤P X.
0.2 We showed that if Y ≤P X and X can be solved in polynomial time, then Y can

be solved in polynomial time.
0.3 Thus, every problem Y ∈ NP is such that Y ∈ P .
0.4 =⇒ NP ⊆ P .
0.5 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time algorithm for X .

8 / 63



NP-Hard Problems
Definition 23.6.
A problem X is said to be NP-Hard if

1. (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

9 / 63



Consequences of proving NP-Completeness
If X is NP-Complete

1. Since we believe P 6= NP,
2. and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

10 / 63



Consequences of proving NP-Completeness
If X is NP-Complete

1. Since we believe P 6= NP,
2. and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

10 / 63



Consequences of proving NP-Completeness
If X is NP-Complete

1. Since we believe P 6= NP,
2. and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

10 / 63



Consequences of proving NP-Completeness
If X is NP-Complete

1. Since we believe P 6= NP,
2. and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

10 / 63



THE END
...

(for now)

11 / 63


