Algorithms & Models of Computation CS/ECE 374, Fall 2020

22.2.4 NP: Definition

Nondeterministic Polynomial Time

Definition 22.3.

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition 22.3.

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Example 22.4.

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- I: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about **C** as an algorithm for the original problem, if:

- Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate *c*.
- **2** The algorithm now verifies the certificate c for the instance I.
- **NP** can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example 22.5.

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and **co-NP** later on.

THE END

(for now)

. . .