Algorithms & Models of Computation CS/ECE 374, Fall 2020

22.2.2 Certifiers/Verifiers

Certifiers

Definition 22.1.

An algorithm $C(\cdot, \cdot)$ is a <u>certifier</u> for problem **X** if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes"
- If $s \not\in X$, C(s, t) = "no" for every t.

The string **t** is called a certificate or proof for **s**.

Efficient (polynomial time) Certifiers

Definition 22.2 (Efficient Certifier.).

A certifier **C** is an <u>efficient certifier</u> for problem **X** if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes" and $|t| \leq p(|s|)$.
- If $s \not\in X$, C(s, t) = "no" for every t.

• $C(\cdot, \cdot)$ runs in polynomial time in the size of s.

Example: Independent Set

O Problem: Does G = (V, E) have an independent set of size $\geq k$?

- Certificate: Set $S \subseteq V$.
- **2** Certifier: Check $|S| \ge k$ and no pair of vertices in **S** is connected by an edge.

THE END

(for now)

. . .