Algorithms \& Models of Computation
22.2

NP: Nondeterministic polynomial time

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

22.2.1
 Introduction

\mathbf{P} and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- $P \subseteq N P$
- Some problems in $\boldsymbol{N P}$ are in \boldsymbol{P} (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether $\boldsymbol{P}=\boldsymbol{N P}$.

Problems with no known polynomial time algorithms

Problems

(1) Independent Set
(2) Vertex Cover
(3) Set Cover
(4) SAT
(5) 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\boldsymbol{X}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
© Independent Set in graph G and k : a subset S of vertices
(3) Homework

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\boldsymbol{X}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph \boldsymbol{G} and \boldsymbol{k} : a subset \boldsymbol{S} of vertices.
(3) Homework

Sudoku

			2	5				
	3	6		4		8		
	4					1	6	
2								
7	6							
								9
	1	5						3
		9		8		2	4	
				3	7			

Given $\boldsymbol{n} \times \boldsymbol{n}$ sudoku puzzle, does it have a solution?

Solution to the Sudoku example...

1	8	7	$\mathbf{2}$	$\mathbf{5}$	6	9	3	4
9	$\mathbf{3}$	$\mathbf{6}$	7	$\mathbf{4}$	1	$\mathbf{8}$	5	2
5	$\mathbf{4}$	2	8	9	3	$\mathbf{1}$	$\mathbf{6}$	7
$\mathbf{2}$	9	1	3	7	4	6	8	5
$\mathbf{7}$	$\mathbf{6}$	3	5	2	8	4	$\mathbf{1}$	$\mathbf{9}$
8	5	4	6	1	9	7	2	$\mathbf{3}$
4	$\mathbf{1}$	$\mathbf{5}$	9	6	2	3	$\mathbf{7}$	8
3	7	$\mathbf{9}$	1	$\mathbf{8}$	5	$\mathbf{2}$	$\mathbf{4}$	6
6	2	8	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{7}$	5	9	1

THE END

(for now)

