Algorithms & Models of Computation CS/ECE 374, Fall 2020

Nondeterministic polynomial time

Lecture 22 Thursday, November 26, 2020

LATEXed: October 22, 2020 14:05

Algorithms & Models of Computation CS/ECE 374, Fall 2020

22.1 Review Algorithms & Models of Computation CS/ECE 374, Fall 2020

22.1.1 Review: Polynomial reductions

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: <u>polynomial time reduction</u> from a <u>decision</u> problem X to a <u>decision</u> problem Y is an <u>algorithm</u> A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$.

 $(|I_Y| = \text{size of } I_Y).$

• Answer to I_X YES \iff answer to I_Y is YES.

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$.
- 3 Answer to I_X YES \iff answer to I_Y is YES.

$$(|I_Y| = \text{size of } I_Y).$$

Proposition 22.2.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Polynomial-time Reduction

Definition 22.1.

 $X \leq_P Y$: <u>polynomial time reduction</u> from a <u>decision</u> problem X to a <u>decision</u> problem Y is an <u>algorithm</u> A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$.
- 3 Answer to I_X YES \iff answer to I_Y is YES.

$$(|I_{Y}| = \text{size of } I_{Y}).$$

Proposition 22.2.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a Karp reduction.

A quick reminder

- **9 f** and **g** monotone increasing. Assume that:

- $\implies g(f(n)) = O(n^{bd})$ is a polynomial.
- **Conclusion:** Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:
 - $\begin{array}{l} \bullet \quad f(n) \leq a * n^b \\ \bullet \quad g(n) \leq c * n^d \\ \end{array} \quad (i.e., \ f(n) = O(n^b)) \\ (i.e., \ g(n) = O(n^d)) \end{array}$

- **Conclusion:** Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:
- $\implies \mathbf{g}(\mathbf{f}(\mathbf{n})) = \mathbf{O}(\mathbf{n}^{bd})$ is a polynomial.
- **Conclusion:** Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:
 - $f(n) \le a * n^b$ (i.e., $f(n) = O(n^b)$)

 $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$)

- **Conclusion:** Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:

- Source Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:
- $f(n) \le a * n^b$ (i.e., $f(n) = O(n^b)$) • $g(n) \le c * n^d$ (i.e., $g(n) = O(n^d)$) a, b, c, d: constants. • $g(f(n)) \le g(a * n^b) \le c * (a * n^b)^d \le c \cdot a^d * n^{bd}$
- $\ \, \textcircled{\textbf{g}} \ \, \Longrightarrow \ \, \textbf{g}(\textbf{f}(\textbf{\textit{n}})) = \textbf{O}(\textbf{\textit{n}}^{bd}) \ \, \texttt{is a polynomial}.$
- Conclusion: Composition of two polynomials, is a polynomial.

A quick reminder

- **9** *f* and *g* monotone increasing. Assume that:
 - $\begin{array}{ll} \bullet & f(n) \leq a * n^b \\ \bullet & g(n) \leq c * n^d \end{array} & (i.e., f(n) = O(n^b)) \\ (i.e., g(n) = O(n^d)) \end{array}$

- $\ \, \textcircled{\textbf{g}} \ \, \Longrightarrow \ \, \textbf{g}(\textbf{f}(\textbf{\textit{n}})) = \textbf{O}(\textbf{\textit{n}}^{bd}) \ \, \texttt{is a polynomial}.$
- **Conclusion:** Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition 22.3. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- (2) To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- (i) ...show that an algorithm for **Y** implies an algorithm for **X**.

Transitivity of Reductions

Proposition 22.3. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- **2** To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

③ ...show that an algorithm for **Y** implies an algorithm for **X**.

Transitivity of Reductions

Proposition 22.3. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- **2** To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- \odot ...show that an algorithm for **Y** implies an algorithm for **X**.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $X \leq_{P} Y$ you need to give an algorithm \mathcal{A} that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- **2** Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - **2** typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Suns in **polynomial** time.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- **2** Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).

• Runs in polynomial time.

THE END

(for now)

. . .