Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Nondeterministic polynomial time

Lecture 22
Thursday, November 26, 2020

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

22.1
 Review

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
22.1.1

Review: Polynomial reductions

Polynomial-time Reduction

Definition 22.1.
$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{X}\right|$.
$\left(\left|I_{Y}\right|=\right.$ size of $\left.I_{Y}\right)$.
(0) Answer to \boldsymbol{I}_{X} YES \Longleftrightarrow answer to \boldsymbol{I}_{Y} is YES.

Polynomial-time Reduction

Definition 22.1.

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{X}\right|$.

$$
\left(\left|I_{Y}\right|=\text { size of } \boldsymbol{I}_{Y}\right) .
$$

(0) Answer to \boldsymbol{I}_{X} YES \Longleftrightarrow answer to \boldsymbol{I}_{Y} is YES.

Proposition 22.2.

If $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

Polynomial-time Reduction

Definition 22.1.

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{X}\right|$.

$$
\left(\left|\boldsymbol{I}_{Y}\right|=\text { size of } \boldsymbol{I}_{Y}\right) .
$$

(0) Answer to \boldsymbol{I}_{X} YES \Longleftrightarrow answer to \boldsymbol{I}_{Y} is YES.

Proposition 22.2.

If $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

This is a Karp reduction.

Composing polynomials...

A quick reminder

(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(3) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$

(3) $\Longrightarrow \boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n}))=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b d}}\right)$ is a polynomial.
(a) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $\boldsymbol{g}(\boldsymbol{n}) \leq \boldsymbol{c} * \boldsymbol{n}^{\boldsymbol{d}}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n})) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$

(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $\boldsymbol{g}(\boldsymbol{n}) \leq \boldsymbol{c} * \boldsymbol{n}^{\boldsymbol{d}}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n})) \leq \boldsymbol{g}\left(\boldsymbol{a} * \boldsymbol{n}^{\boldsymbol{b}}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$

(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(1) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $\boldsymbol{g}(\boldsymbol{n}) \leq \boldsymbol{c} * \boldsymbol{n}^{\boldsymbol{d}}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d}$ \qquad
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $\boldsymbol{g}(\boldsymbol{n}) \leq \boldsymbol{c} * \boldsymbol{n}^{\boldsymbol{d}}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$

(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:

- $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
($\boldsymbol{g}(\boldsymbol{n}) \leq c * \boldsymbol{n}^{d}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(0) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
- $\Longrightarrow \boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n}))=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b d}}\right)$ is a polynomial.
- Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $\boldsymbol{g}(\boldsymbol{n}) \leq \boldsymbol{c} * \boldsymbol{n}^{\boldsymbol{d}}$
(i.e., $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{d}}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow \boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n}))=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b d}}\right)$ is a polynomial.
(9) Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition 22.3.
$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $X \leq_{p} Y$ you need to show a reduction FROM X TO Yshow that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Transitivity of Reductions

Proposition 22.3.

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{\boldsymbol{P}} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO \boldsymbol{Y}
(3) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Transitivity of Reductions

Proposition 22.3.

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{\boldsymbol{P}} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO \boldsymbol{Y}
(3) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) Satisfies the property that answer to \boldsymbol{I}_{X} is YES iff \boldsymbol{I}_{Y} is YES.
(1) typical easy direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES if answer to \boldsymbol{I}_{X} is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is NO).
(3) Runs in polynomial time.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) Satisfies the property that answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES iff $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.
(1) typical easy direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is NO).
(3) Runs in

THE END

(for now)

