Algorithms \& Models of Computation CS/ECE 374, Fall 2020

21.6.2
 Reducing SAT to 3SAT

SAT \leq_{P} SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: $1,2,3, \ldots$ variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg \boldsymbol{y} \vee \neg z \vee w \vee \boldsymbol{z}) \wedge(\neg \boldsymbol{x})
$$

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables.

Basic idea
(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF

SAT \leq_{p} 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: $\mathbf{1 , 2 , 3 , \ldots}$ variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg \boldsymbol{x} \vee \neg \boldsymbol{y} \vee \neg \boldsymbol{z} \vee \boldsymbol{w} \vee \boldsymbol{u}) \wedge(\neg \boldsymbol{x})
$$

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables...

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF .

3SAT \leq_{p} SAT

(1) 3 SAT \leq_{P} SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

SAT \leq_{p} 3SAT

Claim 21.3. $S A T \leq_{P} 3 S A T$

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable $\Longleftrightarrow \varphi^{\prime}$ is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

SAT \leq_{P} 3SAT

Claim 21.3.
$S A T \leq_{p} 3 S A T$.
Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable $\Longleftrightarrow \varphi^{\prime}$ is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly

SAT $\leq_{p} 3$ SAT

Claim 21.3.
 $S A T \leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable $\Longleftrightarrow \varphi^{\prime}$ is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length $\mathbf{3}$, replace it with several clauses of length exactly 3.

SAT \leq_{P} 3SAT

A clause with two literals
Reduction Ideas: clause with 2 literals
(1) Case clause with 2 literals: Let $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \boldsymbol{\ell}_{2}$. Let \boldsymbol{u} be a new variable. Consider

$$
\boldsymbol{c}^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \vee_{0} \neg^{\prime}\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\boldsymbol{\psi} \wedge \boldsymbol{c}^{\prime}$ is satisfiable $\Longleftrightarrow \varphi$ is satisfiable.

SAT \leq_{P} 3SAT

A clause with a single literal
Reduction Ideas: clause with 1 literal
(1) Case clause with one literal: Let \boldsymbol{c} be a clause with a single literal (i.e., $\boldsymbol{c}=\boldsymbol{\ell}$). Let $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
\boldsymbol{c}^{\prime}= & (\ell \vee \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \boldsymbol{u} \vee \neg \boldsymbol{v}) \\
& \wedge(\ell \vee \neg \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \neg \boldsymbol{u} \vee \neg \boldsymbol{v})
\end{aligned}
$$

(2) Suppose $\varphi=\boldsymbol{\psi} \wedge \boldsymbol{c}$. Then $\varphi^{\prime}=\psi \wedge \boldsymbol{c}^{\prime}$ is satisfiable $\Longleftrightarrow \varphi$ is satisfiable.

SAT \leq_{P} SAT

A clause with more than 3 literals
Reduction Ideas: clause with more than 3 literals
(1) Case clause with five literals: Let $\boldsymbol{c}=\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{4} \vee \ell_{5}$. Let \boldsymbol{u} be a new variable. Consider

(2) Suppose $\varphi=\psi \wedge \boldsymbol{c}$. Then $\varphi^{\prime}=\psi \wedge \boldsymbol{c}^{\prime}$ is satisfiable $\Longleftrightarrow \varphi$ is satisfiable.

SAT \leq_{P} SAT

A clause with more than 3 literals
Reduction Ideas: clause with more than 3 literals
(1) Case clause with $\boldsymbol{k}>3$ literals: Let $\boldsymbol{c}=\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{k}$ Let \boldsymbol{u} be a new variable. Consider

(2) Suppose $\varphi=\psi \wedge \boldsymbol{c}$. Then $\varphi^{\prime}=\psi \wedge \boldsymbol{c}^{\prime}$ is satisfiable $\Longleftrightarrow \varphi$ is satisfiable.

Breaking a clause

Lemma 21.4.

For any boolean formulas \boldsymbol{X} and \boldsymbol{Y} and \mathbf{z} a new boolean variable. Then

$$
\boldsymbol{X} \vee \boldsymbol{Y} \text { is satisfiable }
$$

if and only if, z can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in \boldsymbol{X} and \boldsymbol{Y}).

SAT \leq_{P} 3SAT (contd)

Clauses with more than $\mathbf{3}$ literals
-et $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \cdots \vee \ell_{k}$. Let $\boldsymbol{u}_{1}, \ldots \boldsymbol{u}_{k-3}$ be new variables. Consider

$$
\begin{aligned}
\boldsymbol{c}^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee \boldsymbol{u}_{1}\right) \wedge\left(\ell_{3} \vee \neg \boldsymbol{u}_{1} \vee \boldsymbol{u}_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg \boldsymbol{u}_{2} \vee \boldsymbol{u}_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg \boldsymbol{u}_{k-4} \vee \boldsymbol{u}_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg \boldsymbol{u}_{k-3}\right)
\end{aligned}
$$

Claim 21.5.
$\varphi=\psi \wedge c$ is satisfiable $\Longleftrightarrow \varphi^{\prime} \equiv \psi \wedge c^{\prime}$ is satisfiable.
Another way to see it - reduce size of clause by one:

$$
\boldsymbol{c}^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee \boldsymbol{u}_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg \boldsymbol{u}_{k-3}\right)
$$

An Example

Example 21.6.

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \mathbf{2}\right. \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg \vee\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

An Example

Example 21.6.

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4} \wedge \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{1}} \vee \mathbf{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \underbrace{}_{\left(\neg x_{2} \vee \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right)} \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg x_{1} \vee \neg x_{1}\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg \vee\right) .
\end{aligned}
$$

An Example

Example 21.6.

Equivalent form:

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{4} \vee x_{1} \vee \neg \neg x_{3} \vee y_{1}\right) \wedge\left(x_{1}\right) . \\
& \left(x_{4} \vee x_{1} \vee \neg y_{1}\right)
\end{aligned}
$$

An Example

Example 21.6.

Equivalent form:

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

$$
35 E 1
$$

$$
\begin{aligned}
& \psi=\left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT \((\varphi)\) :
    // \(\varphi\) : CNF formula.
    for each clause \(c\) of \(\varphi\) do
        if \(\boldsymbol{c}\) does not have exactly 3 literals then
                construct \(c^{\prime}\) as before
        else
        \(c^{\prime}=c\)
    \(\psi\) is conjunction of all \(c^{\prime}\) constructed in loop
    return Solver3SAT \((\psi)\)
```


Correctness (informal)

φ is satisfiable $\Longleftrightarrow \boldsymbol{\psi}$ is satisfiable because for each clause \boldsymbol{c}, the new 3 CNF formula \boldsymbol{c}^{\prime} is logically equivalent to \boldsymbol{c}.

THE END

(for now)

