
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

21.6.2
Reducing SAT to 3SAT
FLNAME:21.6.2.0 ZZZ:21.6.2.0 Reducing SAT to 3SAT

65 / 80

SAT ≤P 3SAT
How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses
to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses.
3 Repeat the above till we have a 3CNF.

66 / 80

SAT ≤P 3SAT
How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses
to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses.
3 Repeat the above till we have a 3CNF.

66 / 80

3SAT ≤P SAT
1 3SAT ≤P SAT.
2 Because...

A 3SAT instance is also an instance of SAT.

67 / 80

SAT ≤P 3SAT
Claim 21.3.
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that
1 ϕ is satisfiable ⇐⇒ ϕ′ is satisfiable.
2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several clauses of length exactly
3.

68 / 80

SAT ≤P 3SAT
Claim 21.3.
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that
1 ϕ is satisfiable ⇐⇒ ϕ′ is satisfiable.
2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several clauses of length exactly
3.

68 / 80

SAT ≤P 3SAT
Claim 21.3.
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that
1 ϕ is satisfiable ⇐⇒ ϕ′ is satisfiable.
2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several clauses of length exactly
3.

68 / 80

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable ⇐⇒ ϕ is satisfiable.

69 / 80

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single literal (i.e., c = `).

Let u, v be new variables. Consider

c ′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)
∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable ⇐⇒ ϕ is satisfiable.

70 / 80

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = `1 ∨ `2 ∨ `3 ∨ `4 ∨ `5. Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 ∨ `3 ∨ u

)
∧

(
`4 ∨ `5 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable ⇐⇒ ϕ is satisfiable.

71 / 80

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = `1 ∨ `2 ∨ . . . ∨ `k . Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 . . . `k−2 ∨ u

)
∧

(
`k−1 ∨ `k ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable ⇐⇒ ϕ is satisfiable.

72 / 80

Breaking a clause
Lemma 21.4.
For any boolean formulas X and Y and z a new boolean variable. Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

73 / 80

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim 21.5.
ϕ = ψ ∧ c is satisfiable ⇐⇒ ϕ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

74 / 80

An Example
Example 21.6.

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

75 / 80

An Example
Example 21.6.

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

75 / 80

An Example
Example 21.6.

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

75 / 80

An Example
Example 21.6.

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

75 / 80

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c′ as before
else

c′ = c
ψ is conjunction of all c′ constructed in loop
return Solver3SAT(ψ)

Correctness (informal)
ϕ is satisfiable ⇐⇒ ψ is satisfiable because for each clause c, the new 3CNF
formula c ′ is logically equivalent to c.

76 / 80

THE END
...

(for now)

77 / 80

