Algorithms & Models of Computation CS/ECE 374, Fall 2020

21.4.2 Polynomial-time reductions and hardness

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- (2) If you believe that **Independent Set** does NOT have an efficient algorithm...
- **③** Showed: Independent Set \leq_P Clique
- $\bigcirc \implies$ Clique should not be solvable in polynomial time.
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- **2** If you believe that **Independent Set** does NOT have an efficient algorithm...
- **③** Showed: Independent Set \leq_P Clique
- $\bigcirc \implies$ Clique should not be solvable in polynomial time.
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- **2** If you believe that **Independent Set** does NOT have an efficient algorithm...
- Showed: Independent Set \leq_P Clique
- $\bigcirc \implies$ Clique should not be solvable in polynomial time.
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- **2** If you believe that **Independent Set** does NOT have an efficient algorithm...
- Showed: Independent Set \leq_P Clique
- \bigcirc \implies Clique should not be solvable in polynomial time.
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- **2** If you believe that **Independent Set** does NOT have an efficient algorithm...
- Showed: Independent Set \leq_P Clique
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- **2** If you believe that **Independent Set** does NOT have an efficient algorithm...
- Showed: Independent Set \leq_P Clique
- \bigcirc \implies Clique should not be solvable in polynomial time.
- If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

Polynomial-time reductions and instance sizes

Proposition 21.3.

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 ${\mathcal R}$ can write at most ${m p}(|{m I}_{m X}|)$ bits and hence $|{m I}_{m Y}| \leq {m p}(|{m I}_{m X}|).$

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition 21.3.

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition 21.3.

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

Definition 21.4.

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

Proposition 21.5.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Polynomial-time Reduction

Definition 21.4.

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

Proposition 21.5.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **1** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **(**) $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- $\mathcal{R}'(x) = \mathcal{R}_{Y \to Z}(\mathcal{R}_{X \to Y}(x))$ is a reduction from X to Z.
- Output Provide the analytic structure of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Proof.

*R*_{X→Y}: Polynomial reduction that works in polynomial time *f*(*x*). *w* ∈ *L*_X ⇐⇒ *w'* = *R*_{X→Y}(*w*) ∈ *L*_Y. *R*_{Y→Z}: Polynomial reduction that works in polynomial time *g*(*x*). *w'* ∈ *L*_Y ⇐⇒ *w''* = *R*_{Y→Z}(*w'*) ∈ *L*_Z. *w* ∈ *L*_X ⇐⇒ *w'* = *R*_{X→Y}(*w*) ∈ *L*_Y ⇐⇒ *w''* = *R*_{Y→Z}(*R*_{X→Y}(*w*)) ∈ *L*_Z. *w* ∈ *L*_X ⇐⇒ *R*_{Y→Z}(*R*_{X→Y}(*w*)) ∈ *L*_Z. *R*'(*x*) = *R*_{Y→Z}(*R*_{X→Y}(*x*)) is a reduction from *X* to *Z*.
Running time of *R'*(*x*) is *h*(*x*) = *g*(*f*(*x*)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Proof.

R_{X→Y}: Polynomial reduction that works in polynomial time f(x).
w ∈ L_x ⇐⇒ w' = R_{X→Y}(w) ∈ L_Y.
R_{Y→Z}: Polynomial reduction that works in polynomial time g(x).
w' ∈ L_Y ⇐⇒ w'' = R_{Y→Z}(w') ∈ L_Z.
w ∈ L_x ⇐⇒ w' = R_{X→Y}(w) ∈ L_Y ⇐⇒ w'' = R_{Y→Z}(R_{X→Y}(w)) ∈ L_Z.
w ∈ L_x ⇐⇒ R_{Y→Z}(R_{X→Y}(w)) ∈ L_Z.
R'(x) = R_{Y→Z}(R_{X→Y}(x)) is a reduction from X to Z.
Running time of R'(x) is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Proof.

1 $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).

$$w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$$

- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- 3 Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- 3 Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- In Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- **(a)** Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- If $\mathbf{\mathcal{R}}'(\mathbf{x})$ is $\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$, which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).

- **2** Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Proposition 21.6. $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Q** $\mathcal{R}_{X \to Y}$: Polynomial reduction that works in polynomial time f(x).
- $w \in L_X \iff w' = \mathcal{R}_{X \to Y}(w) \in L_Y.$
- **3** $\mathcal{R}_{Y \to Z}$: Polynomial reduction that works in polynomial time g(x).
- $w' \in L_Y \iff w'' = \mathcal{R}_{Y \to Z}(w') \in L_Z.$

- $\mathcal{R}'(x) = \mathcal{R}_{Y \to Z}(\mathcal{R}_{X \to Y}(x))$ is a reduction from X to Z.
- **③** Running time of $\mathcal{R}'(x)$ is h(x) = g(f(x)), which is a polynomial.

Be careful about reduction direction

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y. That is, show that an algorithm for Y implies an algorithm for X.

THE END

(for now)

. . .