Algorithms & Models of Computation CS/ECE 374, Fall 2020

20.6.4 Implementing Kruskal's Algorithm

```
Kruskal_ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

choose e \in E of minimum cost

if (T \cup \{e\} does not have cycles)

add e to T

return the set T
```

```
Kruskal_ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do
    choose e \in E of minimum cost
    if (T \cup {e} does not have cycles)
        add e to T
return the set T
```

```
Kruskal_ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do
    choose e \in E of minimum cost
    if (T \cup {e} does not have cycles)
        add e to T
return the set T
```

```
Kruskal_ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

choose e \in E of minimum cost

if (T \cup \{e\} does not have cycles)

add e to T

return the set T
```

```
Kruskal_ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

choose e \in E of minimum cost

if (T \cup \{e\} does not have cycles)

add e to T

return the set T
```

```
Kruskal_ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do
    choose e \in E of minimum cost
    if (T \cup \{e\} does not have cycles)
        add e to T
return the set T
```

9 Presort edges based on cost. Choosing minimum can be done in O(1) time

- **2** Do **BFS/DFS** on $T \cup \{e\}$. Takes O(n) time
- Total time $O(m \log m) + O(mn) = O(mn)$

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do

pick e = (u, v) \in E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets.

Using Union-Find data structure can implement Kruskal's algorithm in $O((m + n) \log m)$ time.

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do

pick e = (u, v) \in E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets.

Using Union-Find data structure can implement Kruskal's algorithm in $O((m + n) \log m)$ time.

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do

pick e = (u, v) \in E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets.

Using Union-Find data structure can implement Kruskal's algorithm in $O((m + n) \log m)$ time.

THE END

(for now)

. . .