
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

20.3
The Algorithms for computing MST
FLNAME:20.3.0.0 ZZZ:20.3.0.0 The Algorithms for computing MST

22 / 73



Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E
remove e from E
if (e satisfies condition)

add e to T
return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

KA PA RD

23 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

1

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

1

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

1
4

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

1
4

9

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

1
4

9

Figure: MST of G

24 / 73



Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23
1

4

9

Figure: MST of G

24 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T . In each iteration,
pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

25 / 73



Reverse Delete Algorithm

Initially Z is the set of all edges in G
T ⇐ Z (* T will store edges of a MST *)

while Z is not empty do
choose e ∈ Z of largest cost

remove e from Z
if removing e does not disconnect T then

remove e from T
return the set T

Returns a minimum spanning tree. Back

26 / 73



Bor̊uvka’s Algorithm

Simplest to implement. See notes.
Assume G is a connected graph.

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V \ S
Add edges in X to T

return the set T

27 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7
9

1, 2, 6, 7

3, 4, 5

28 / 73



Bor̊uvka’s Algorithm

9

1, 2, 6, 7

3, 4, 5

9

1, 2, 6, 7

3, 4, 5

28 / 73



Bor̊uvka’s Algorithm

9

1, 2, 6, 7

3, 4, 5

9

1, 2, 6, 7

3, 4, 5

28 / 73



Bor̊uvka’s Algorithm

9

1, 2, 6, 7

3, 4, 5

+

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

9

1, 2, 6, 7

3, 4, 5

+

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



Bor̊uvka’s Algorithm

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

20

15

3

17

28

23
1

4

9

16
25

36
6

1 2

3

45

7

28 / 73



THE END
...

(for now)

29 / 73


