Algorithms & Models of Computation CS/ECE 374, Fall 2020

20.2 Safe and unsafe edges

Assumption

And for now \ldots

Assumption 20.1.

Edge costs are distinct, that is no two edge costs are equal.

Cuts

Definition 20.2.

Given a graph G = (V, E), a <u>cut</u> is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

 $(S, V \setminus S) = \{uv \in E \mid u \in S, v \in V \setminus S\}.$

Cuts

Definition 20.2.

Given a graph G = (V, E), a <u>cut</u> is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

 $(S, V \setminus S) = \{uv \in E \mid u \in S, v \in V \setminus S\}.$

Safe and Unsafe Edges

Definition 20.3.

An edge e = (u, v) is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition 20.4.

An edge $m{e} = (m{u},m{v})$ is an unsafe edge if there is some cycle $m{C}$ such that $m{e}$ is the unique maximum cost edge in $m{C}$.

Safe and Unsafe Edges

Definition 20.3.

An edge e = (u, v) is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition 20.4.

An edge e = (u, v) is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{\langle w(e) \rangle} = (V, \{xy \in E \mid w(xy) < w(e)\}).$

1 If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)} + e$ contains a cycle where e is most expensive.

⇒ *e* is unsafe.

 If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).
 ⇒ e is safe.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{<w(e)} = (V, \{xy \in E \mid w(xy) < w(e)\})$. Observe that $e \notin E(G_{<w(e)})$.

If x, y in some connected component of G_{<w(e)}, then G_{<w(e)} + e contains a cycle where e is most expensive.

 If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).
 ⇒ e is safe.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv.
Let G_{<w(e)} = (V, {xy ∈ E | w(xy) < w(e)}).
Observe that e ∉ E(G_{<w(e)}).
If x, y in some connected component of G_{<w(e)}, then G_{<w(e)} + e contains a cycle where e is most expensive.
⇒ e is unsafe.
If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x.

The edge e is cheapest edge in cut $(S, V \setminus S)$.

⇒ e is safe.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{<w(e)} = (V, \{xy \in E \mid w(xy) < w(e)\})$. Observe that $e \notin E(G_{<w(e)})$.

• If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)} + e$ contains a cycle where e is most expensive.

 \implies *e* is unsafe.

 If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).
 ⇒ e is safe.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{\langle w(e) \rangle} = (V, \{xy \in E \mid w(xy) < w(e)\}).$ Observe that $e \notin E(G_{\langle w(e) \rangle}).$

• If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)} + e$ contains a cycle where e is most expensive.

- \implies *e* is unsafe.
- If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).
 ⇒ e is safe.

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{<w(e)} = (V, \{xy \in E \mid w(xy) < w(e)\})$. Observe that $e \notin E(G_{<w(e)})$.

• If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)} + e$ contains a cycle where e is most expensive.

 \implies *e* is unsafe.

 If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).

Proposition 20.5.

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Consider any edge e = uv. Let $G_{<w(e)} = (V, \{xy \in E \mid w(xy) < w(e)\}).$ Observe that $e \notin E(G_{<w(e)}).$

• If x, y in some connected component of $G_{<w(e)}$, then $G_{<w(e)} + e$ contains a cycle where e is most expensive.

 \implies *e* is unsafe.

 If x and y are in diff connected component of G_{<w(e)}, Let S the vertices of connected component of G_{<w(e)} containing x. The edge e is cheapest edge in cut (S, V \ S).
 ⇒ e is safe.

Safe edge

Example...

Every cut identifies one safe edge...

...the cheapest edge in the cut. Note: An edge *e* may be a safe edge for many cuts!

Safe edge

Example...

Every cut identifies one safe edge...

Safe edge in the cut $(S, V \setminus S)$

...the cheapest edge in the cut. Note: An edge e may be a safe edge for <u>many</u> cuts!

Unsafe edge

Example...

Every cycle identifies one **unsafe** edge...

...the most expensive edge in the cycle.

Unsafe edge

Example...

Every cycle identifies one **unsafe** edge...

...the most expensive edge in the cycle.

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Example

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Some key observations

Proofs later

Lemma 20.6.

If e is a safe edge then every minimum spanning tree contains e.

Lemma 20.7.

If e is an unsafe edge then no MST of G contains e.

THE END

(for now)

. . .