Algorithms & Models of Computation CS/ECE 374, Fall 2020

20.1.2 Some graph theory

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has n-1 edges.

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-1$ edges.

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-1$ edges.

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on \boldsymbol{n} nodes has $\boldsymbol{n}-1$ edges.

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has n 1 edges.

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Subgraph *H* of *G* is <u>spanning</u> for *G*, if *G* and *H* have same connected components.
- A graph G is connected \iff it has a spanning tree.
- Every tree has a leaf (i.e., vertex of degree one).
- Every spanning tree of a graph on n nodes has n 1 edges.

Exchanging an edge in a spanning tree

Lemma 20.1.

 $T = (V, E_T)$: a spanning tree of G = (V, E). For every non-tree edge $e \in E \setminus E_T$ there is a unique cycle C in T + e. For every edge $f \in C - \{e\}$, T - f + e is another spanning tree of G.

THE END

(for now)

. . .